Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017402    DOI: 10.1088/1674-1056/ac1572
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cross correlation mediated by distant Majorana zero modes with no overlap

Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇)
Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
Abstract  Existing studies via shot noise calculation conclude that the cross correlation between the currents in the two leads connected by a pair of Majorana zero modes (MZMs) vanishes when their coupling energy $∊_{\rm M}\to 0$. Motivated by the intrinsic nature of nonlocality of the MZMs, we revisit this important problem and propose an experimental scheme to demonstrate the nonvanishing cross correlation even at the limit $∊^{}_{\rm M}\to 0$. The proposed scheme employs the Andreev-process-associated branch circuit currents, which are theoretically obtained by applying a decomposition analysis for the total currents while are accessible directly in practical measurement. For different bias voltage setup, we find intriguing results of both negative and positive correlations and carry out simple physical understanding using a quantum jump technique. Importantly, combining together with the evidence of the zero-bias-peak of conductance, the nonlocal cross correlation predicted in this work can help to confirm the existence of the nonlocal MZMs.
Keywords:  Majorana zero modes      cross correlation      Andreev currents  
Received:  04 June 2021      Revised:  12 July 2021      Accepted manuscript online:  18 July 2021
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304) and the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174).
Corresponding Authors:  Xin-Qi Li     E-mail:  xinqi.li@tju.edu.cn

Cite this article: 

Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇) Cross correlation mediated by distant Majorana zero modes with no overlap 2022 Chin. Phys. B 31 017402

[1] Kitaev A Y 2001 Phys. Usp. 44 131
[2] Kitaev A Y 2003 Ann. Phys. (Amsterdam) 303 2
[3] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[4] Das Sarma S, Freedman M and Nayak C 2015 njp Quantum Inf. 1 15001
[5] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[6] Zhang H, Liu D E, Wimmer M and Kouwenhoven L P 2019 Nat. Commun. 10 5128
[7] Alicea J 2012 Rep. Prog. Phys. 75 076501
[8] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[9] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[10] Aguado R 2017 Riv. Nuovo Cimento Soc. Ital. Fis. 40 523
[11] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[12] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[13] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[14] Fu L and Kane C L 2009 Phys. Rev. B 79 161408
[15] Cayao J, San-Jose P, Black-Schaffer A M, Aguado R and Prada E 2017 Phys. Rev. B 96 205425
[16] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
[17] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[18] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
[19] Cao Y S, Wang P Y, Xiong G, Gong M and Li X Q 2012 Phys. Rev. B 86 115311
[20] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[21] Ulrich J and Hassler F 2015 Phys. Rev. B 92 075443
[22] Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New J. Phys. 13 053016
[23] Liu J, Zhang F C and Law K T 2013 Phys. Rev. B 88 064509
[24] Haim A, Berg E, von Oppen F and Oreg Y 2015 Phys. Rev. Lett. 114 166406
[25] Manousakis J, Wille C, Altland A, Egger R, Flensberg K and Hassler F 2020 Phys. Rev. Lett. 124 096801
[26] Sengupta K, Zutic I, Kwon H J, Yakovenko V M and Das Sarma S 2001 Phys. Rev. B 63 144531
[27] Flensberg K 2010 Phys. Rev. B 82 180516(R)
[28] Hansen E B, Danon J and Flensberg K 2016 Phys. Rev. B 93 094501(R)
[29] van Heck B, Lutchyn R M and Glazman L I 2016 Phys. Rev. B 93 235431
[30] Chiu C K, Sau J D and Das Sarma S 2017 Phys. Rev. B 96 054504
[31] Vaitiekenas S, Deng M T, Nygard J, Krogstrup P and Marcus C M 2018 Phys. Rev. Lett. 121 037703
[32] Vaitiekenas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrom C J, Marti-Sanchez S, Arbiol J, Krogstrup P, Casparis L and Marcus C M 2018 Phys. Rev. Lett. 121 147701
[33] Hofstetter L, Csonka S, Baumgartner A, Fülöp G, d’Hollosy S, Nygard J and Schönenberger C 2011 Phys. Rev. Lett. 107 136801
[34] Gramich J, Baumgartner A and Schönenberger C 2017 Phys. Rev. B 96 195418
[35] Hansen E B, Danon Jand Flensberg K 2018 Phys. Rev. B 97 041411(R)
[36] Danon J, Hellenes A B, Hansen E B, Casparis L, Higginbotham A P and Flensberg K 2020 Phys. Rev. Lett. 124 036801
[37] Ménard G C, Anselmetti G L R, Martinez E A, Puglia D, Malinowski F K, Lee J S, Choi S, Pendharkar M, Palmstrom C J, Flensberg K, Marcus C M, Casparis L and Higginbotham A P 2020 Phys. Rev. Lett. 124 036802
[38] Liu C X, Sau J D, Stanescu T D and Das Sarma S 2017 Phys. Rev. B 96 075161
[39] Prada E, Aguado R and San-Jose P 2017 Phys. Rev. B 96 085418
[40] Awoga O A, Cayao J and Black-Schaffer A M 2019 Phys. Rev. Lett. 123 117001
[41] Deng M T, Vaitiekenas S, Prada E, San-Jose P, Nygard J, Krogstrup P, Aguado R and Marcus C M 2018 Phys. Rev. B 98 085125
[42] Vuik A, Nijholt B, Akhmerov A R and Wimmer M 2019 SciPost. Phys. 7 061
[43] Hell M, Flensberg K and Leijnse M 2018 Phys. Rev. B 97 161401
[44] Semenoff G W and Sodano P 2006 arXiv: 0601261[cond-mat]; arXiv: 0605147[cond-mat]
[45] Tewari S, Zhang C, Das Sarma S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001
[46] Fu L 2010 2010 Phys. Rev. Lett. 104 056402
[47] Li X Q and Xu L 2020 Phys. Rev. B 101 205401
[48] Li X Q, Feng W, Qin L and Jin J 2020 arXiv: 2008.04807v2[condmat.mes-hall]
[49] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[50] Li X Q, Luo J Y, Yang Y G, Cui P and Yan Y J 2005 Phys. Rev. B 71 205304
[51] Jin J S, Li J, Liu Y, Li X Q and Yan Y J 2014 J. Chem. Phys. 140 244111
[52] Wiseman H M and Milburn G J 2009 Quantum Measurement and Control (Cambridge: Cambridge University Press)
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[3] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[4] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[5] Topological phase boundary in a generalized Kitaev model
Da-Ping Liu(刘大平). Chin. Phys. B, 2016, 25(5): 057101.
[6] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[7] Theoretical analysis of stack gas emission velocity measurement by optical scintillation
Yang Yang (杨阳), Dong Feng-Zhong (董凤忠), Ni Zhi-Bo (倪志波), Pang Tao (庞涛), Zeng Zong-Yong (曾宗泳), Wu Bian (吴边), Zhang Zhi-Rong (张志荣). Chin. Phys. B, 2014, 23(4): 040703.
No Suggested Reading articles found!