CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stress and morphology of a nonpolar a-plane GaN layer on r-plane sapphire substrate |
Xu Sheng-Rui(许晟瑞)a)†, Hao Yue(郝跃)a), Zhang Jin-Cheng(张进成)a), Xue Xiao-Yong(薛晓咏)a), Li Pei-Xian(李培咸) b), Li Jian-Ting(李建婷)c), Lin Zhi-Yu(林志宇)a), Liu Zi-Yang(刘子扬)a), Ma Jun-Cai(马俊彩)a), He Qiang(贺强)b), and Lü Ling(吕玲) a) |
a Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China; b School of Technical Physics, Xidian University, Xi'an 710071, China; c Zoomview Oprtoelectronic, Co., LTD, Xi'an 710065, China |
|
|
Abstract The anisotropic strain of a nonpolar (1120) a-plane GaN epilayer on an r-plane (1102) sapphire substrate, grown by low-pressure metal-organic vapour deposition is investigated by Raman spectroscopy. The room-temperature Raman scattering spectra of nonpolar a-plane GaN are measured in surface and edge backscattering geometries. The lattice is contracted in both the c- and the m-axis directions, and the stress in the m-axis direction is larger than that in the c-axis direction. On the surface of this sample, a number of cracks appear only along the m-axis, which is confirmed by the scanning electron micrograph. Atomic force microscopy images reveal a significant decrease in the root-mean-square roughness and the density of submicron pits after the stress relief.
|
Received: 24 May 2011
Revised: 05 July 2011
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Key Science and Technology Special Project, China (Grant No. 2008ZX01002-002), the Major Program and State Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033), and the Fundamental Research Funds for the Central Universities, China (Grant No. JY10000904009). |
Cite this article:
Xu Sheng-Rui(许晟瑞), Hao Yue(郝跃), Zhang Jin-Cheng(张进成), Xue Xiao-Yong(薛晓咏), Li Pei-Xian(李培咸), Li Jian-Ting(李建婷), Lin Zhi-Yu(林志宇), Liu Zi-Yang(刘子扬), Ma Jun-Cai(马俊彩), He Qiang(贺强), and Lü Ling(吕玲) Stress and morphology of a nonpolar a-plane GaN layer on r-plane sapphire substrate 2011 Chin. Phys. B 20 107802
|
[1] |
Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature (London) 406 865
|
[2] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
|
[3] |
Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
|
[4] |
Xu S R, Zhang J C, Li Z M, Zhou X W, Xu Z H, Zhao G C, Zhu Q W, Zhang J F, Mao W and Hao Y 2009 Acta Phys. Sin. 58 5705 (in Chinese)
|
[5] |
Imer B, Wu F, Spec J S and DenBaars S P 2007 J. Cryst. Growth 306 330
|
[6] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth 311 3622
|
[7] |
Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521
|
[8] |
Roder C, Einfeldt S, Figge S, Paskova T, Hommel D, Paskov P P, Monemar B, Behn U, Haskell B A, Fini P T and Nakamura S 2006 J. Appl. Phys. 100 103511
|
[9] |
Lu J Y, Wang Z J, Deng D M, Wang Y, Chen K J, Lau K M and Zhang T Y 2010 J. Appl. Phys. 108 123520
|
[10] |
Flissikowski T, Brandt O, Misra P and Grahn H T 2008 J. Appl. Phys. 104 063507
|
[11] |
Beechem T, Christensen A, Green D S and Graham S 2009 J. Appl. Phys. 106 114509
|
[12] |
Hushur A, Manghnani M H and Narayan J 2009 J. Appl. Phys. 106 054317
|
[13] |
Lin H C, Feng Z C, Chen M S, Shen Z X, Ferguson I T and Lu W J 2009 J. Appl. Phys. 105 036102
|
[14] |
Wang K R, Ramsteiner M, Mauder C, Wan Q, Hentschel T, Grahn H, Kalisch T H, Heuken M, Jansen R H and Trampert A 2010 Appl. Phys. Lett. 96 231914
|
[15] |
Gao H Y, Yan F W, Zhang H X, Li J M, Wang J X and Yan J C 2007 J. Appl. Phys. 101 103533
|
[16] |
Song J S, Rho H, Jeong M S, Ju J W and Lee I H 2010 Phys. Rev. B 81 233304
|
[17] |
Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899
|
[18] |
Tsuda M, Furukawa H, Honshio A, Iwaya M, Kamiyama S, Amano H and Akasaki I 2006 Phys. Stat. Sol. (b) 243 1525
|
[19] |
Ma B, Hu W, Miyake H and Hiramatsu K 2009 Appl. Phys. Lett. 95 121910
|
[20] |
Hirai A, Haskell B A, McLaurin M B, Wu F, Schmidt M C, Kim K C, Baker T J, DenBaars S P, Nakamura S and Speck J S 2009 Appl. Phys. Lett. 90 121119
|
[21] |
Moram M A, Johnston C F, Hollander J L, Kappers M J and Humphreys C J 2009 J. Appl. Phys. 105 113501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|