Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 107801    DOI: 10.1088/1674-1056/20/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multipeak-structured photoluminescence mechanisms of as-prepared and oxidized Si nanoporous pillar arrays

Xu Hai-Jun(许海军), Chan Yu-Fei(廛宇飞), and Su Lei(苏雷)
State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  Silicon dominates the electronic industry, but its poor optical properties mean that it is not preferred for photonic applications. Visible photoluminescence (PL) was observed from porous Si at room temperature in 1990, but the origin of these light emissions is still not fully understood. This paper reports that an Si nanocrystal, silicon nanoporous pillar array (Si-NPA) with strong visible PL has been prepared on a Si wafer substrate by the hydrothermal etching method. After annealing in O2 atmosphere, the hydride coverage of the Si pillar internal surface is replaced by an oxide layer, which comprises of a great quantity of Si nanocrystal (nc-Si) particles and each of them are encapsulated by an Si oxide layer. Meanwhile a transition from efficient triple-peak PL bands from blue to red before annealing to strong double-peak blue PL bands after annealing is observed. Comparison of the structural, absorption and luminescence characteristics of the as-prepared and oxidized samples provides evidence for two competitive transition processes, the band-to-band recombination of the quantum confinement effect of nc-Si and the radiative recombination of excitons from the luminescent centres located at the surface of nc-Si units or in the Si oxide layers that cover the nc-Si units because of the different oxidation degrees. The sizes of nc-Si and the quality of the Si oxide surface are two major factors affecting two competitive processes. The smaller the size of nc-Si is and the stronger the oxidation degree of Si oxide layer is, the more beneficial for the luminescent centre recombination process to surpass the quantum confinement process is. The clarification on the origin of the photons may be important for the Si nanoporous pillar array to control both the PL band positions and the relative intensities according to future device requirements and further fabrication of optoelectronic nanodevices.
Keywords:  silicon nanocrystal      photoluminescence      annealing effect      quantum confinement      luminescent centre  
Received:  10 May 2011      Revised:  08 June 2011      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the Doctoral Fund of the Ministry of Education of China (Grant No. 20090010120014), the Beijing Natural Science Foundation (Grant No. 1103033), and the Fundamental Research Funds for the Central Universities.

Cite this article: 

Xu Hai-Jun(许海军), Chan Yu-Fei(廛宇飞), and Su Lei(苏雷) Multipeak-structured photoluminescence mechanisms of as-prepared and oxidized Si nanoporous pillar arrays 2011 Chin. Phys. B 20 107801

[1] Ball P 2001 Nature 409 974
[2] Canham L T 1990 Appl. Phys. Lett. 57 1046
[3] Bisi O, Ossicini S and Pavesi L 2000 Surf. Sci. Rep. 38 1
[4] Granitzer P and Rumpf K 2010 Materials 3 943
[5] Urbach B, Axelrod E and Sa'ar A 2007 Phys. Rev. B 75 205330
[6] Stewart M P and Buriak J M 2000 Adv. Mater. 12 859
[7] Lin L, Guo S, Sun X, Feng J and Wang Y 2010 Nanoscale Res. Lett. 5 1822
[8] Smith A, Yamani Z H, Roberts N, Turner J, Habbal S R, Granick S and Nayfeh M H 2005 Phys. Rev. B 72 205307
[9] Ray M, Hossain S M, Klie R F, Banerjee K and Ghosh S 2010 Nanotechnology 21 505602
[10] Bruno M, Palummo M, Marini A, Sole R D and Ossicini S 2007 Phys. Rev. Lett. 98 036807
[11] Peng K Q and Lee S T 2011 Adv. Mater. 23 198
[12] Lin G R, Chang Y C, Liu E S, Kuo H C and Lin H S 2007 Appl. Phys. Lett. 90 181923
[13] Zhang Y H, Li X J, Zhang L and Chen Q W 1998 Phys. Rev. Lett. 81 1710
[14] Xu H J and Li X J 2008 Opt. Express 16 2933
[15] Li P, Wang G, Ma Y and Fang R 1998 Phys. Rev. B 58 4057
[16] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
[17] Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Tendeloo G V and Moshchalkov V V 2008 Nature Nanotechnology 3 174
[18] Sato K and Hirakuri K 2006 J. Vac. Sci. Technol. B 24 604
[19] Wang C, Yang Y, Yang R D, Li L, Xiong F and Bao J M 2011 Chin. Phys. B 20 026802
[20] Prokes S M 1993 Appl. Phys. Lett. 62 3244
[21] Wang X X, Zhang J G, Ding L, Cheng B W, Ge W K, Yu J Z and Wang Q M 2005 Phys. Rev. B 72 195313
[22] Delley B and Steigmeier E F 1993 Phys. Rev. B 47 1397
[23] Grosman A, Ortega C, Siejka J and Chamarro M 1993 J. Appl. Phys. 74 1992
[24] Qin G G and Li Y J 2003 Phys. Rev. B 68 085309
[25] Jenkins R and Snyder R L 1996 Introduction to X-Ray Powder Diffractometry (New York: Wiley)
[26] Kirk C T 1988 Phys. Rev. B 38 1255
[27] Kamitsos E I 1996 Phys. Rev. B 53 14659
[28] Islam Md N and Kumar S 2003 J. Appl. Phys. 93 1753
[29] Bruno M, Palummo M, Marini A, Sole R D and Ossicini S 2007 Phys. Rev. Lett. 98 036807
[30] Cooke D W, Bennett B L, Famum E H, Hults W L, Sickafus K E, Smith J F, Smith J L, Taylor T N, Tiwari P and Portis A M 1996 Appl. Phys. Lett. 68 1663
[31] Carius R, Fischer R, Holzenkampfer E and Stuke J 1981 J. Appl. Phys. 52 4241
[32] Xu H J and Li X J 2007 J. Phys.: Condens. Matter 19 056003
[33] Qin G G, Ran G Z, Sun K and Xu H J 2010 J. Nanosci. Nanotechnol. 10 1584
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!