|
|
A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity |
Wang Yi(王奕)a)b)†, Ye Liu(叶柳) a)‡, and Fang Bao-Long(方保龙)a) |
a School of Physics and Material Science, Anhui University, Hefei 230039, China; b Teaching and Research Section of Physics, School of Life Sciences, Anhui Medical University, Hefei 230032, China |
|
|
Abstract We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne-Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.
|
Received: 19 April 2011
Revised: 09 June 2011
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074002), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003), and the Personal Development Foundation of Anhui Province of China (Grant No. 2008Z018). |
Cite this article:
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity 2011 Chin. Phys. B 20 100313
|
[1] |
Bell J S 1965 Physics 1 195
|
[2] |
Greenberger D M, Horne M A and Zeilinger A 1989 in Bell's Theorem, Quantum Theory, and Conceptions of the Universe ed. Kafatos M (Dordrecht: Kluwer)
|
[3] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 J. Phys. 58 1131
|
[4] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[5] |
Pan J W, Simon C, Brukner C and Zeilinger A 2001 Nature (London) 410 1067
|
[6] |
Horodecki M, Oppenheim J and Winter A 2005 Nature (London) 436 673
|
[7] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[8] |
Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
|
[9] |
Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H and Pan J W 2004 Nature (London) 430 54
|
[10] |
Leibfried D D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature (London) 438 639
|
[11] |
Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature (London) 404 256
|
[12] |
Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
|
[13] |
Christian F R, Mark R, Hartmut H, Wolfgang H, Jan B, Gavin P T L, Christoph B, Ferdinand S K and Rainer B 2004 Science 304 1478
|
[14] |
For recent reviews about optical QIP, see, e.g., Ralph T C 2006 Rep. Prog. Phys. 69 853
|
[15] |
DellAnno F, de Siena S and Illuminati F 2006 Phys. Rep. 428 53
|
[16] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[17] |
Myers C R and Laflamme R arXiv: quant-ph/0512104
|
[18] |
Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
|
[19] |
Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature (London) 403 515
|
[20] |
Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
|
[21] |
Kok P and Braunstein S L 2000 Phys. Rev. A 62 064301
|
[22] |
Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
|
[23] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[24] |
Milburn G J and Walls D F 1984 Phys. Rev. A 30 56
|
[25] |
Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
|
[26] |
Grangier P, Levenson J A and Poizat J P 1998 Nature (London) 396 537
|
[27] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302(R)
|
[28] |
Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T D and Zeilinger A 2007 Nature (London) 445 65
|
[29] |
Ladd T D, Loock P V, Nemoto K, Munro W J and Yamamoto Y 2006 New J. Phys. 8 184
|
[30] |
Loock P V, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|