Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100302    DOI: 10.1088/1674-1056/ac70bb
GENERAL Prev   Next  

Measurement-device-independent quantum secret sharing with hyper-encoding

Xing-Xing Ju(居星星)1,3, Wei Zhong(钟伟)3, Yu-Bo Sheng(盛宇波)2,3, and Lan Zhou(周澜)1,†
1. College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Quantum secret sharing (QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing (MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger—Horne—Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 103. The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
Keywords:  measurement-device-independent quantum secret sharing      hyper-encoding technology      cross-Kerr nonlinearity      hyper-entangled Greenberger—Horne—Zeilinger state analysis  
Received:  25 March 2022      Revised:  10 May 2022      Accepted manuscript online: 
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106).
Corresponding Authors:  Lan Zhou     E-mail:  zhoul@njupt.edu.cn

Cite this article: 

Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜) Measurement-device-independent quantum secret sharing with hyper-encoding 2022 Chin. Phys. B 31 100302

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers Systems, and Signal Processing, December 10—12, 1984, Bangalore, India, pp. 175—179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[4] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[5] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[6] Zhang Y C, Chen Z Y, Pirandola S, et al. 2020 Phys. Rev. Lett. 125 010502
[7] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[8] Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B and Liu A Q 2021 AAPPS Bull. 31 15
[9] Yin Z Q, Lu F Y, Teng J, Wang S, Chen W, Guo G C and Han Z F 2021 Fundamental Res. 1 93
[10] Guo H, Li Z Y, Yu S and Zhang Y C 2021 Fundamental Res. 1 96
[11] Tang G Z, Li C Y and Wang M 2021 Quantum Engin. 3 e79
[12] Wang X F, Sun X J, Liu Y X, et al. 2021 Quantum Engin. 3 e73
[13] Li B H, Xie Y M, Li Z, Weng C X, Li C L, Yin H L and Chen Z B 2021 Opt. Lett. 46 5529
[14] Liu W B, Li C L, Xie Y M, et al. 2021 PRX Quantum 2 040334
[15] Sun Z Q, Han Y X, Dou T Q, et al. 2021 Chin. Phys. B 30 110303
[16] Chen X T, Zhang L P, Chang S K, Zhang H and Hu L Y 2021 Chin. Phys. B 30 060304
[17] Luo H, Wang Y J, Ye W, Zhong H, Mao Y Y and Guo Y 2022 Chin. Phys. B 31 020306
[18] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[19] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[20] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[21] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[22] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[23] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[24] Markham D and Sanders B C 2008 Phys. Rev. A 78 042309
[25] Bell B A, Markham D A, Herrera-Mart D, et al. 2014 Nat. Commun. 5 5480
[26] Tavakoli A, Herbauts I, Zukowski M and Bourennane M 2015 Phys. Rev. A 92 030302
[27] Grice W P and Qi B 2019 Phys. Rev. A 100 022339
[28] Williams B P, Lukens J M, Peters N A, Qi B and Grice W P 2019 Phys. Rev. A 99 062311
[29] Wu X D, Wang Y J and Huang D 2020 Phys. Rev. A 101 022301
[30] Lipinska V, Murta G, Ribeiro J and Wehner S 2020 Phys. Rev. A 101 032332
[31] Jia Z Y, Gu J, Li B H, Yin H L and Chen Z B 2021 Entropy 23 716
[32] Gu J, Xie Y M, Liu W B, Fu Y, Yin H L and Chen Z B 2021 Opt. Express 29 32244
[33] Gu J, Cao X Y, Yin H L and Chen Z B 2021 Opt. Express 29 9165
[34] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[35] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[36] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[37] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[38] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[39] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China Phys. Mech. Astron. 61 90312
[40] Yang L, Wu J W, Lin Z S, Yin L G and Long G L 2020 Sci. China Phys. Mech. Astron. 63 110311
[41] Li T and Long G L 2020 New J. Phys. 22 063017
[42] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[43] Wang C 2021 Fundamental Res. 1 91
[44] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[45] Gao C Y, Guo P L and Ren B C 2021 Quantum Engin. 3 e83
[46] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183
[47] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Zhang Z R and Wei K J 2021 Sci. China Phys. Mech. Astron. 64 120311
[48] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[49] Zhou L and Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311
[50] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313
[51] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[52] Jain N, Wittmann C, Lydersen L, et al. 2011 Phys. Rev. Lett. 107 110501
[53] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[54] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[55] Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
[56] Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[57] Yang X Q, Wei K J, Ma H Q, Liu H W, Yin Z Q, Cao Z and Wu L A 2018 Sci. Rep. 8 5728
[58] Wang Y, Tian C X, Su Q, Wang M H and Su X L 2019 Sci. China Inf. Sci. 62 72501
[59] Gao Z K, Li T and Li Z H 2020 Sci. China Phys. Mech. Astron. 63 120311
[60] Yang Y G, Wang Y C, Yang Y L, et al. 2021 Sci. China Phys. Mech. Astron. 64 260321
[61] Huang L, Zhang Y and Yu S 2021 Chin. Phys. Lett. 38 040301
[62] Shi G F 2021 Chin. Phys. B 30 100303
[63] Cui Z X, Zhou L, Zhong W and Sheng Y B 2019 Sci. China Phys. Mech. Astron. 62 110311
[64] Yan Y F, Zhou L, Zhong W and Sheng Y B 2021 Front. Phys. 16 11501
[65] Wu X D, Zhou L, Zhong W and Sheng Y B 2020 Quantum Inf. Process. 19 354
[66] Ke Z J, Wang Y T, Yu S, et al. 2020 Chin. Phys. B 29 080301
[67] Xia Y, Chen Q Q, Song J and Song H S 2012 J. Opt. Soc. Am. B 29 1029
[68] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[69] Liu Y, Chen T Y, Wang L J, et al. 2013 Phys. Rev. Lett. 111 130502
[70] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[71] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[72] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[73] Loock P V 2011 Laser Photon. Rev. 5 167
[74] Beck K M, Hosseini M, Duan Y H and Vuletic V 2016 Proc. Natl. Acad. Sci. USA 113 9740
[75] Tiarks D, Schmidt S, Rempe G and Dürr S 2016 Sci. Adv. 2 e1600036
[76] Sinclair J, Angulo D, Lupu-Gladstein N, Bonsma-Fisher K and Steinberg A M 2019 Phys. Rev. Res. 1 033193
[1] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[2] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[3] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[4] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[5] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[6] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[7] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[8] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[9] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[10] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[11] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
No Suggested Reading articles found!