CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors |
Zhao De-Gang(赵德刚)a)†, Zhang Shuang(张爽)a), Liu Wen-Bao(刘文宝)a), Hao Xiao-Peng(郝小鹏)b), Jiang De-Sheng(江德生) a), Zhu Jian-Jun(朱建军)a), Liu Zong-Shun(刘宗顺)a), Wang Hui(王辉) a), Zhang Shu-Ming(张书明)a), Yang Hui(杨辉)a), and Wei Long(魏龙)c) |
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b National Institute of Metrology, Beijing 100013, China; c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.
|
Received: 14 September 2009
Revised: 30 November 2009
Accepted manuscript online:
|
PACS:
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
61.72.J-
|
(Point defects and defect clusters)
|
|
Fund: Project supported by the National
Science Fund for Distinguished Young Scholars (Grant No. 60925017),
the National Natural Science Foundation of China (Grant Nos.
60836003 and 60776047), the National Basic Research Program of China
(Grant No. 2007CB936700) and the National High Technology Research
and Development Program of China (Grant No. 2007AA03Z401). |
Cite this article:
Zhao De-Gang(赵德刚), Zhang Shuang(张爽), Liu Wen-Bao(刘文宝), Hao Xiao-Peng(郝小鹏), Jiang De-Sheng(江德生), Zhu Jian-Jun(朱建军), Liu Zong-Shun(刘宗顺), Wang Hui(王辉), Zhang Shu-Ming(张书明), Yang Hui(杨辉), and Wei Long(魏龙) Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors 2010 Chin. Phys. B 19 057802
|
[1] |
McClintock R, Mayes K, Yasan A, Shiell D, Kung P and Razeghi M 2005 Appl. Phys. Lett. 86 011117
|
[2] |
Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 975
|
[3] |
Parish G, Keller S, Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Fleischer S B, DenBaars S P, Mishra U K and Tarsa E J 1999 Appl. Phys. Lett. 75 247
|
[4] |
Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
|
[5] |
Hashizume T, Kotani J and Hasegawa H 2004 Appl. Phys. Lett. 84 4884
|
[6] |
Hsu J W P, Manfra M J, Lang D V, Richter S, Chu S N G, Sergent A M, Kleiman R N, Pfeiffer L N and Molnar R J 2001 Appl. Phys. Lett. 78 1685
|
[7] |
Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C and Speck J S 2002 Appl. Phys. Lett. 91 9821
|
[8] |
See, for example, Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
|
[9] |
Sze S M 1981 Physics of Semiconductor Devices 2nd ed. (New York: Wiley) pp245--311
|
[10] |
Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145
|
[11] |
Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
|
[12] |
Hauto J\"{arvi P and Corbel C In: 1995 Dupasquier A and Mills Jr A P (editor) Positron Spectroscopy of Solids (Amsterdam: IOS Press)
|
[13] |
Peng C X, Wang K F, Zhang Y, Guo F L, Weng H M and Ye B J 2009 Chin. Phys. B 18 2072
|
[14] |
Saarinen K, Laine T, Kuisma S, Nissil\"{a J, HautoJ\"{arvi P, Dobrzynski L, Baranowski J M, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I and Porowski S 1997 Phys. Rev. Lett. 79 3030
|
[15] |
Oila J, Saarinen K, Wickenden A E, Koleske D D, Henry R L and Twigg M E 2003 Appl. Phys. Lett. 82 1021
|
[16] |
Zhao D G, Jiang D S, Yang H, Zhu J J, Liu Z S, Zhang S M, Liang J W, Hao X P, Wei L, Li X, Li X Y and Gong H M 2006 Appl. Phys. Lett. 88 252101
|
[17] |
Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228
|
[18] |
Neugebauer J and van de Walle C 1996 Appl. Phys. Lett. 69 503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|