Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057803    DOI: 10.1088/1674-1056/19/5/057803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel yellow emitting phosphor Dy3+, Bi3+ co-doped YVO4 potentially for white light emitting diodes

Ci Zhi-Peng(慈志鹏)a), Wang Yu-Hua(王育华) a)b)†, and Zhang Jia-Chi(张加弛)a)
a Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; bKey Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  Novel Y$_{1 - x - y}$VO$_{4}$:$x$Dy$^{3 + }$, $y$Bi$^{3 + }$ ($0.01 \le x \le 0.05, 0 \le y \le 0.20$) phosphors for light emitting diode (LED) were successfully synthesised by solid-state reaction. The calculation results of electronic structure show that YVO$_{4}$ has a direct band gap with 3 eV at $G$. The top of the valence band is dominated by O 2p state and the bottom of the conduction band is mainly composed of O 2p and V 3d states. An efficient yellow emission under near-ultraviolet (365 nm) excitation is observed. Compared with the pure YVO$_{4}$:Dy$^{3 + }$ samples, the Dy$^{3 + }$, Bi$^{3 + }$ co-doped samples show a more intensive emission peak (at 574 nm) and a new broad emission band (450--770 nm), due to the $^{4}F_{9 / 2}-{}^{6}H_{13 / 2 }$ transition of Dy$^{3 + }$ and the emission of the VO$_{4}^{3 - }-$Bi$^{3 + }$ complex respectively. The optimum chromaticity index of Y$_{1 - x - y}$VO$_{4}$:$x$Dy$^{3 + }$, $y$Bi$^{3 + }$ ($0.01 \le x \le 0.05, 0 \le y \le 0.20$) is (0.447, 0.497), which indicates that YVO$_{4}$:Dy$^{3 + }$, Bi$^{3 + }$ has higher colour saturation than the commercial phosphor YAG: Ce$^{3 + }$. The effects of concentration of Dy$^{3 + }$, Bi$^{3 + }$, electric states and the photoluminescence properties are discussed in details.
Keywords:  phosphor      light-emitting diode      vanadate  
Received:  05 May 2009      Revised:  20 November 2009      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  71.20.Ps (Other inorganic compounds)  
  78.55.Hx (Other solid inorganic materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10874061).

Cite this article: 

Ci Zhi-Peng(慈志鹏), Wang Yu-Hua(王育华), and Zhang Jia-Chi(张加弛) A novel yellow emitting phosphor Dy3+, Bi3+ co-doped YVO4 potentially for white light emitting diodes 2010 Chin. Phys. B 19 057803

[1] Li P L, Yang Z P, Wang Z J and Guo Q L 2008 Chin. Phys. B 17 1907
[2] Chen X B, Zhang G Y, Chen J K, Wang H, Liu Y B, Shang M R and Li J W 1993 Chin. Phys. 2 695
[3] Zhang L, Guo X, Liang T, Gu X L, Lin M and Shen G D 2007 J. Microelectron. 38 1
[4] Wei X D, Cai L Y, Lu F C, Chen X L, Chen X Y and Liu Q L 2009 Chin. Phys. B 18 3555
[5] Wang Z J, Yang Z P, Guo Q L, Li P L and Fu G S 2009 Chin. Phys. B 18 2068
[6] Yang Z P, Li X, Yang Y and Li X M 2007 J. Lumin. 707 122
[7] Yao G Q, Duan J F, Ren M, Yu H D and Lin J H 2001 J. Lumin. 21 22
[8] Xia G D, Zhou S M, Zhang J Jand Xu J 2005 J. Cryst. Growth. 357 279
[9] Li P L, Yang Z P, Wang Z J and Guo Q L 2008 Chin. Phys. B 17 1135
[10] Ma M X, Zhu D C and Tu M J 2009 Acta Phys. Sin. 58 5826 (in Chinese)
[11] Wang Y H, Sun Y K, Zhang J C, Ci Z P, Zhang Z Y and Wang L 2008 Physica B 403 2071
[12] Neeraj S, Kijima N and Cheetham A K 2004 Solid State Communications 131 65
[13] Vengala Rao B and Buddhudu S 2008 Materials Chemistry and Physics 1 65
[14] Yan B and Su X Q 2006 Journal of Non-Crystalline Solids 352 3275
[15] Zhang H W, Fu X Y, Niu S Y, Sun G Q and Xin Q 2007 Materials Letters 61 308
[16] Kong J H, Im W B, Lee D C, Kim J Y, Jeon D Y, Kang Y C and Jung K Y 2005 Solid State Commun. 133 651
[17] Seeta Rama Raju G, Park J Y, Jung H C, Yang H K, Moon B K, Jeong J H and Kim J H 2009 Optical Materials 31 1210
[18] Lakshminarayana G, Yang Hucheng and Qiu Jianrong 2009 Journal of Solid State Chemistry 182 669
[19] Jia G, Song Y H, Yang M, Huang Y J, Zhang L H and You H P 2009 Optical Materials 31 1032
[20] Gerner P, Kramer K and Gudel H U 2003 J. Lumin. 112 102
[21] Setlur A A and Srivastava A M 2006 Optical Materials 29 410
[22] Chen L, Zheng H W, Cheng J G, Song P, Yang G T, Zhang G B and Wu C 2008 Journal of Luminescence 128 2027
[23] Kumar Vinay, Kumar Ravi, Lochab S P and Singh Nafa 2007 Nuclear Instruments and Methods in Physics Research B 262 194
[24] Zeng X Q, Im S J, Jang S H, Kim Y M, Park H B, Son S H, Hatanaka H, Kim G Y and Kim S G 2006 J. Lumin. 121 1
[25] Liu X M and Lin J 2007 J. Lumin. 700 122
[26] Segall M, Linda P, Probert M, Pickard C, Hasnip P, Clark S and Payne M 2002 Materials Studio CASTEP, version 2.2; (Accelrys: San Diego, CA)
[27] Segall M, Linda P, Probert M, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys.: Condens. Mater. 14 2717
[28] Baglio, Sovers J A and J O 1971 Journal of Solid State Chemistry. 3 458
[29] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[30] Su X Q and Yan B 2006 Journal of Alloys and Compounds 421 273
[31] Zhang H W, Fu X Y, Niu S Y and Xin Q 2008 Journal of Alloys and Compounds 457 61
[32] Zhang J C and Wang Y H 2008 Chin. Phys. Lett. 25 1453
[33] Blasse G and Bril A 1968 J. Chem. Phys. 48 217
[34] Moncorg R and Boulon G 1979 J. Lumin. 376 18
[35] Blasse George 1980 The Luminescence of Closed-shell Transition-metal Complexes pp.32--35 (Heidelberg, Berlin: Springer)
[36] Lee S K, Chang H J, Han C H, Kim H J, Jang H G and Hee D P 2001 Journal of Solid State Chemistry 156 267
[37] Wang S F, Gu F, Lu M K, Zou W G, Liu S W, Xu D, Yuan D R and Zhou G J 2004 Journal of Physics and Chemistry of Solids 65 1243
[38] Zhang Q H, Wang J, Yu R J, Zhang M and Su Q 2008 Electrochem. Solid-State Lett. 11 335
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[3] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[4] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[5] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[6] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[7] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[8] Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation
Bo-Shi Mu(牟博石), Yi Zhang(张熠), Qing-Feng Bian(边庆丰), Cheng-Ren Li(李成仁), Zhi-Chao Li(李志超), Yun-Ting Chu(褚云婷), Feng Zhao(赵峰), and Jing-Chang Sun(孙景昌). Chin. Phys. B, 2021, 30(12): 123201.
[9] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[10] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[11] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[12] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[13] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[14] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[15] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
No Suggested Reading articles found!