Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047302    DOI: 10.1088/1674-1056/19/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of GaN/AlN quantum dots with adjacent threading dislocations

Ye Han(叶寒), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远), Yao Wen-Jie(姚文杰), Chen Zhi-Hui(陈智辉), Jia Bo-Yong(贾博雍), and Liu Yu-Min(刘玉敏)
Key Laboratory of Information Photonics and Optical Communications,Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band k $\cdot$ p theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.
Keywords:  quantum dot      threading dislocation      electronic structure      absorption efficiency  
Received:  25 July 2009      Revised:  05 November 2009      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  73.21.La (Quantum dots)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  71.15.-m (Methods of electronic structure calculations)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No.~2009AA03Z405), the National Natural Science Foundation of China (Grant Nos.~60908028 and 60971068), the High School Innovation and Introducing Talent Pr

Cite this article: 

Ye Han(叶寒), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远), Yao Wen-Jie(姚文杰), Chen Zhi-Hui(陈智辉), Jia Bo-Yong(贾博雍), and Liu Yu-Min(刘玉敏) Electronic and optical properties of GaN/AlN quantum dots with adjacent threading dislocations 2010 Chin. Phys. B 19 047302

[1] Arlery M, Rouviere L J, Widmann F, Daudin B and Feuillet G 2002 Appl. Phys. Lett. 74 }3287
[2] Nakaoka T, Kako S and Arakawa Y 2006 Physica E 32 148
[3] Widmann F, Simon J, Daudin B, Feuillet G, Rouviere L J and Pelekanos N T 1998 Phys. Rev. B 58 15989
[4] Rinaldis S, Amico I D and Rossi F 2004 Phys. Rev. B 59 235316
[5] Rouviere L J, Simon J, Pelekanos N T, Daudin B and Feuillet G 1999 Appl. Phys. Lett. 75 2632
[6] Andreev A D and O'Reilly E P 2000 Phys. Rev. B 62 15851
[7] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 3471
[8] Marquardt O, Mourad D, Schulz S, Hickel T, Czycholl G and Neugebauer J 2008 Phys. Rev. B 78 235303
[9] Liang S and L\"u Y W 2007 Acta Phys. Sin. 56 1617 (in Chinese)
[10] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[11] Ye H, Lu P F, Yu Z Y and Han L H 2009 Semicond. Sci. Technol. 24 025029
[12] Williams D P, Andreev A D, O'Reilly E P and Faux D A 2005 Phys. Rev. B 72] 235318
[13] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2009 Chin. Phys. B 18 4136
[14] Ahn D and Chuang S L 1987 IEEE J. Quantum Electron 23 2196
[15] Yao W J, Yu Z Y, Liu Y M and Jia B Y 2009 Physica E 41 1382
[16] Andreev A D, Downes J R and O'Reilly E P 2002 Physica E 13 1094
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[7] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[8] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[14] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!