Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047303    DOI: 10.1088/1674-1056/19/4/047303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport through a periodic array of quantum-dot rings

Xue Hai-Bin(薛海斌)a), Zhang Han-Yin(张瀚尹) a), Nie Yi-Hang(聂一行)a)b)†, Li Zhi-Jian(李志坚)a), and Liang Jiu-Qing(梁九卿) a)
a Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; b Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China
Abstract  Using the tight-binding approximation and the transfer matrix method, this paper studies the electronic transport properties through a periodic array of quantum-dot (QD) rings threaded by a magnetic flux. It demonstrates that the even--odd parity of the QD number in a single ring and the number of the QD rings in the array play a crucial role in the electron transmission. For a single QD ring, the resonance and antiresonance transmission depend not only on the applied magnetic flux but also on the difference between the number of QDs on the two arms of the ring. For an array of QD rings, the transmission properties are related not only to the even--odd parity of the number $N_{0}$ of QDs in the single ring but also to the even--odd parity of the ring number $N$ in the array. When the incident electron energy is aligned with the site energy, for the array of $N$ rings with $N_{0}={\rm odd}$ the antiresonance transmission cannot occur but the resonance transmission may occur and the transmission spectrum has $N$ resonance peaks ($N-1$ resonance peaks) in a period for $N={\rm odd}$ (for $N={\rm even}$). For the array of $N$ rings with $N_{0}={\rm even}$ the transmission properties depend on the flux threading the ring and the QD number on one arm of the ring. These results may be helpful in designing QD devices.
Keywords:  quantum dots      electronic transport      antiresonance transmission      resonance transmission  
Received:  01 June 2009      Revised:  22 July 2009      Accepted manuscript online: 
PACS:  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10774094 and 10775091), National Fundamental Fund of Personnel Training (Grant No.~J0730317) and Natural Science Foundation of Shanxi Province of China (Grant No.~2009011001

Cite this article: 

Xue Hai-Bin(薛海斌), Zhang Han-Yin(张瀚尹), Nie Yi-Hang(聂一行), Li Zhi-Jian(李志坚), and Liang Jiu-Qing(梁九卿) Electronic transport through a periodic array of quantum-dot rings 2010 Chin. Phys. B 19 047303

[1] Bruder C and Schoeller H 1994 Phys. Rev. Lett. 72 1076
[2] Oosterkamp T H, Kouwenhoven L P, Koolen A E A, Vaart N C van der and Harmans C J P M 1997 Phys. Rev. Lett. 78 1536
[3] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[4] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[5] Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
[6] Chen G, Klimeck G, Datta S, Chen G and Goddard W A III 1994 Phys. Rev. B 50 8035
[7] Holleitner A W, Decker C R, Qin H, Ebert K and Blick R H 2001 Phys. Rev. Lett. 87 256802
[8] Shangguan W Z, Au Yeung T C, Yu Y B and Kam C H 2001 Phys. Rev. B 63 235323
[9] Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535
[10] Smith C G, Pepper M, Ahmed H, Frost J E F, Hasko D G, Peacock D C, Ritchie D A and Jones G A C 1988 J. Phys. C 21 % L893
[11] Beenakker C W J 1991 Phys. Rev. B 44] 1646
[12] McEuen P L, Foxman E B, Meirav U, Kastner M A, Meir Y, Wingreen N S and Wind S J 1991 Phys. Rev. Lett. 66 1926
[13] Johnson A T, Kouwenhoven L P, Jong W de, Vaart N C van der, Harmans C J P M and Foxon C T 1992 Phys. Rev. Lett. 69% 1592
[14] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[15] Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
[16] Foxman E B, Meirav U, McEuen P L, Kastner M A, Klein O, Belk P A, Abusch D M and Wind S J 1994 Phys. Rev. B 50 14193
[17] Tarucha S, Austing D G, Honda T, Hage R J van der and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
[18] Yu Y B, Yeung T C A, Shangguan W Z and Kam C H 2000 % Phys. Lett. A 275 131
[19] Meir Y, Wingreen N S and Lee P A 1991 Phys. Rev. Lett. 66 3048
[20] Shangguan W Z, Yeung T C A, Yu Y B and Kam C H 2001 % Phys. Rev. B 63 235323
[21] Wiel W G van der, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[22] Büsser C A, Moreo A and Dagotto E 2004 Phys. Rev. B 70 035402
[23] Zheng Y, Lü T, Zhang C and Su W 2004 Physica E 24 290
[24] Bakhtiari M R, Vignolo P and Tosi M P 2005 Physica E 28 385
[25] Teng B H, Sy H K, Wang Z C, Sun Y Q and Yang H C 2007 % Phys. Rev. B 75 012105
[26] Cai J and Mahan G D 2008 Phys. Rev. B 78] 035115
[27] Sim H S, Lee H W and Chang K J 2001 Phys. Rev. Lett. 87 096803
[28] Kim T S and Hershfield S 2002 Phys. Rev. B 65] 214526
[39] Zeng Z Y and Claro F 2002 Phys. Rev. B 65] 193405
[30] Orellana P A, Adame F D, Gómez I and Ladrón de Guevara M L 2003 Phys. Rev. B 67 085321
[31] Adame F D, Gómez I, Orellanab P A and Ladrón de Guevara M L 2004 Microelectron. J. 35 87
[32] Liu Y S, Yang X F and Xia Y J 2008 Solid State Commun.] 146 502
[33] Oguri A 2001 Phys. Rev. B 63 115305
[34] Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319
[35] Bao K and Zheng Y 2005 Phys. Rev. B 73] 045306
[36] Li H, Lü T and Sun P 2005 Phys. Lett. A 343 403
[37] Chakrabarti A, R?mer R A and Schreiber M 2003 Phys. Rev. B 68 195417
[38] Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
[39] Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
[40] Ladrón de Guevara M L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[41] Chi F and Li S S 2005 J. Appl. Phys. 97 123704
[42] Chi F and Li S S 2006 J. Appl. Phys. 99 043705
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[10] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[11] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[14] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!