CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic transport through a periodic array of quantum-dot rings |
Xue Hai-Bin(薛海斌)a), Zhang Han-Yin(张瀚尹) a), Nie Yi-Hang(聂一行)a)b)†, Li Zhi-Jian(李志坚)a), and Liang Jiu-Qing(梁九卿) a) |
a Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; b Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China |
|
|
Abstract Using the tight-binding approximation and the transfer matrix method, this paper studies the electronic transport properties through a periodic array of quantum-dot (QD) rings threaded by a magnetic flux. It demonstrates that the even--odd parity of the QD number in a single ring and the number of the QD rings in the array play a crucial role in the electron transmission. For a single QD ring, the resonance and antiresonance transmission depend not only on the applied magnetic flux but also on the difference between the number of QDs on the two arms of the ring. For an array of QD rings, the transmission properties are related not only to the even--odd parity of the number $N_{0}$ of QDs in the single ring but also to the even--odd parity of the ring number $N$ in the array. When the incident electron energy is aligned with the site energy, for the array of $N$ rings with $N_{0}={\rm odd}$ the antiresonance transmission cannot occur but the resonance transmission may occur and the transmission spectrum has $N$ resonance peaks ($N-1$ resonance peaks) in a period for $N={\rm odd}$ (for $N={\rm even}$). For the array of $N$ rings with $N_{0}={\rm even}$ the transmission properties depend on the flux threading the ring and the QD number on one arm of the ring. These results may be helpful in designing QD devices.
|
Received: 01 June 2009
Revised: 22 July 2009
Accepted manuscript online:
|
PACS:
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
73.21.La
|
(Quantum dots)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos.~10774094 and
10775091), National Fundamental Fund of Personnel Training (Grant
No.~J0730317) and Natural Science Foundation of Shanxi Province of China (Grant
No.~2009011001 |
Cite this article:
Xue Hai-Bin(薛海斌), Zhang Han-Yin(张瀚尹), Nie Yi-Hang(聂一行), Li Zhi-Jian(李志坚), and Liang Jiu-Qing(梁九卿) Electronic transport through a periodic array of quantum-dot rings 2010 Chin. Phys. B 19 047303
|
[1] |
Bruder C and Schoeller H 1994 Phys. Rev. Lett. 72 1076
|
[2] |
Oosterkamp T H, Kouwenhoven L P, Koolen A E A, Vaart N C van der and Harmans C J P M 1997 Phys. Rev. Lett. 78 1536
|
[3] |
Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
|
[4] |
Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
|
[5] |
Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
|
[6] |
Chen G, Klimeck G, Datta S, Chen G and Goddard W A III 1994 Phys. Rev. B 50 8035
|
[7] |
Holleitner A W, Decker C R, Qin H, Ebert K and Blick R H 2001 Phys. Rev. Lett. 87 256802
|
[8] |
Shangguan W Z, Au Yeung T C, Yu Y B and Kam C H 2001 Phys. Rev. B 63 235323
|
[9] |
Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535
|
[10] |
Smith C G, Pepper M, Ahmed H, Frost J E F, Hasko D G, Peacock D C, Ritchie D A and Jones G A C 1988 J. Phys. C 21 % L893
|
[11] |
Beenakker C W J 1991 Phys. Rev. B 44] 1646
|
[12] |
McEuen P L, Foxman E B, Meirav U, Kastner M A, Meir Y, Wingreen N S and Wind S J 1991 Phys. Rev. Lett. 66 1926
|
[13] |
Johnson A T, Kouwenhoven L P, Jong W de, Vaart N C van der, Harmans C J P M and Foxon C T 1992 Phys. Rev. Lett. 69% 1592
|
[14] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
[15] |
Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
|
[16] |
Foxman E B, Meirav U, McEuen P L, Kastner M A, Klein O, Belk P A, Abusch D M and Wind S J 1994 Phys. Rev. B 50 14193
|
[17] |
Tarucha S, Austing D G, Honda T, Hage R J van der and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
|
[18] |
Yu Y B, Yeung T C A, Shangguan W Z and Kam C H 2000 % Phys. Lett. A 275 131
|
[19] |
Meir Y, Wingreen N S and Lee P A 1991 Phys. Rev. Lett. 66 3048
|
[20] |
Shangguan W Z, Yeung T C A, Yu Y B and Kam C H 2001 % Phys. Rev. B 63 235323
|
[21] |
Wiel W G van der, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
|
[22] |
Büsser C A, Moreo A and Dagotto E 2004 Phys. Rev. B 70 035402
|
[23] |
Zheng Y, Lü T, Zhang C and Su W 2004 Physica E 24 290
|
[24] |
Bakhtiari M R, Vignolo P and Tosi M P 2005 Physica E 28 385
|
[25] |
Teng B H, Sy H K, Wang Z C, Sun Y Q and Yang H C 2007 % Phys. Rev. B 75 012105
|
[26] |
Cai J and Mahan G D 2008 Phys. Rev. B 78] 035115
|
[27] |
Sim H S, Lee H W and Chang K J 2001 Phys. Rev. Lett. 87 096803
|
[28] |
Kim T S and Hershfield S 2002 Phys. Rev. B 65] 214526
|
[39] |
Zeng Z Y and Claro F 2002 Phys. Rev. B 65] 193405
|
[30] |
Orellana P A, Adame F D, Gómez I and Ladrón de Guevara M L 2003 Phys. Rev. B 67 085321
|
[31] |
Adame F D, Gómez I, Orellanab P A and Ladrón de Guevara M L 2004 Microelectron. J. 35 87
|
[32] |
Liu Y S, Yang X F and Xia Y J 2008 Solid State Commun.] 146 502
|
[33] |
Oguri A 2001 Phys. Rev. B 63 115305
|
[34] |
Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319
|
[35] |
Bao K and Zheng Y 2005 Phys. Rev. B 73] 045306
|
[36] |
Li H, Lü T and Sun P 2005 Phys. Lett. A 343 403
|
[37] |
Chakrabarti A, R?mer R A and Schreiber M 2003 Phys. Rev. B 68 195417
|
[38] |
Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
|
[39] |
Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
|
[40] |
Ladrón de Guevara M L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
|
[41] |
Chi F and Li S S 2005 J. Appl. Phys. 97 123704
|
[42] |
Chi F and Li S S 2006 J. Appl. Phys. 99 043705
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|