Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117201    DOI: 10.1088/1674-1056/19/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Disorder-induced enhancement of conductance in doped nanowires

Xu Ning(徐宁),Wang Bao-Lin(王保林), Sun Hou-Qian(孙厚谦), and Kong Fan-Jie(孔凡杰)
Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  A new mechanism is proposed to explain the enhancement of conductance in doped nanowires. It is shown that the anomalous enhancement of conductance is due to surface doping. The conductance in doped nanowires increases with dopant concentration, which is qualitatively consistent with the existing experimental results. In addition, the I-V curves are linear and thus suggest that the metal electrodes make ohmic contacts to the shell-doped nanowires. The electric current increases with wire diameter (D) and decreases exponentially with wire length (L). Therefore, the doped nanowires have potential application in nanoscale electronic and optoelectronic devices.
Keywords:  conductance      nanowires  
Received:  01 May 2010      Revised:  24 June 2010      Accepted manuscript online: 
PACS:  61.72.up (Other materials)  
  73.40.Ns (Metal-nonmetal contacts)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874052), Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200726).

Cite this article: 

Xu Ning(徐宁),Wang Bao-Lin(王保林), Sun Hou-Qian(孙厚谦), and Kong Fan-Jie(孔凡杰) Disorder-induced enhancement of conductance in doped nanowires 2010 Chin. Phys. B 19 117201

[1] Duan X F, Huang Y, Agarwal R and Lieber C M 2003 Nature (London) 421 241
[2] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
[3] Gudiksen M S, Lauhon L J, Wang J F, Smith D C and Lieber C L 2002 Nature (London) 415 617
[4] Morales A M, and Lieber C M 1998 Science 279 208
[5] Lauhon L J, Gudlksen M S, Wang D and Lieber C M 2002 Nature (London) 420 57
[6] Wu Y Y, Fan R and Yang P D 2002 Nano Lett. 2 83
[7] Bj"ork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R and Samuelson L 2002 Nano Lett. 2 87
[8] Yang P D 2005 MRS Bull. 30 85
[9] Ma D D D, Lee C S, Au F C K, Tong S Y and Lee S T 2003 Science bf 299 1874
[10] Wu Y, Xiang J, Yang C, Lu W and Lieber C M 2004 Nature (London) 430 61
[11] Doh Y J, van Dam J A, Roest A L, Bakers E P A M, Kouwenhoven L P and De Franceschi S 2005 Science 309 272
[12] Friedman R S, MacAlpine M C, Ricketts D S, Ham D and Lieber C M 2005 Nature (London) 434 1085
[13] Wang W U, Chen C, Lin K H, Fang Y and Lieber C M 2005 Proc. Natl. Acad. Sci. U.S.A. 102 3208
[14] Patolsky F, Zheng G F, Hayden O, Lakadamydi M, Zhuang X W and Lieber C M 2004 Proc. Natl. Acad. Sci. U.S.A. 101 14017
[15] Radovanovic P V, Barrelet C J, Gradecak S, Qian F and Lieber C L 2005 Nano Lett. 5 1407
[16] He P M, Li Z H, Wang M, Wang F F, Wang X Q, Xu Y B and Yang B 2005 Acta Phys. Sin. 54 1347 (in Chinese)
[17] Cai J M, Gao H J, Guo H M, He X B, Shen C M, Shi D X, Yang T Z and Zhang C D 2008 Chin. Phys. B 17 3444
[18] Cui Y, Duan X F, Hu J T and Lieber C M 2000 J. Phys. Chem. B 104 5213
[19] Yu J Y, Chung S W and Heath J R 2000 J. Phys. Chem. B 104 11864
[20] Ma D D D, Lee C S and Lee S T 2001 Appl. Phys. Lett. 79 15
[21] Huo H B, Dai L, Liu C, You L P, Yang W Q, Ma R M, Ran G Z and Qin G G 2006 Nanotechnology 17 5912
[22] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[23] Ando T 1991 Phys. Rev. B 44 8017
[24] Anantram M P and Govindan T R 1998 Phys. Rev. B 58 4882
[25] Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge, UK: Cambridge University Press)
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[3] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[6] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[7] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[8] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[9] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[10] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[11] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[12] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
No Suggested Reading articles found!