Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117106    DOI: 10.1088/1674-1056/19/11/117106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy

Yue Fang-Yu(越方禹)a)b)†ger, Chen Lu(陈璐)c), Li Ya-Wei(李亚巍)a), Hu Zhi-Gao(胡志高)a), Sun Lin(孙琳)a), Yang Ping-Xiong(杨平雄) a), and Chu Jun-Hao(褚君浩)a)b)
a Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China; bNational Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; c Research Center for Advanced Materials and Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  Based on our previous work, the influence of annealing conditions on impurity species in in-situ arsenic (As)-doped Hg1-xCdxTe (x≈ 0.3) grown by molecular beam epitaxy has been systematically investigated by modulated photoluminescence spectra. The results show that (i) the doped-As acting as undesirable shallow/deep levels in as-grown can be optimized under proper annealing conditions and the physical mechanism of the disadvantage of high activation temperature, commonly assumed to be more favourable for As activation, has been discussed as compared with the reports in the As-implanted HgCdTe epilayers (x≈ 0.39), (ii) the density of VHg has an evident effect on the determination of bandgap (or composition) of epilayers and the excessive introduction of VHg will lead to a short-wavelength shift of epilayers, and (iii) the VHg prefers forming the VHg–AsHg complex when the inactivated-As (AsHg or related) coexists in a certain density, which makes it difficult to annihilate VHg in As-doped epilayers. As a result, the bandedge electronic structures of epilayers under different conditions have been drawn as a brief guideline for preparing extrinsic p-type epilayers or related devices.
Keywords:  As-doped HgCdTe      annealing influence      extrinsic/intrinsic impurities      modulated photoluminescence spectra  
Received:  22 April 2010      Revised:  21 June 2010      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  78.55.Et (II-VI semiconductors)  
  78.66.Hf (II-VI semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB924901), Shanghai Leading Academic Discipline Project (Grant No. B411), National Natural Science Foundation of China (Grant No. 60906043), Shanghai Municipal Commission of Science and Technology Project (Grant Nos. 09ZR1409200 and 10ZR1409800), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090076120010), and the Fundamental Research Funds for the Central Universities (Grant No. 09ECNU).

Cite this article: 

Yue Fang-Yu(越方禹), Chen Lu(陈璐), Li Ya-Wei(李亚巍), Hu Zhi-Gao(胡志高), Sun Lin(孙琳), Yang Ping-Xiong(杨平雄), and Chu Jun-Hao(褚君浩) Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy 2010 Chin. Phys. B 19 117106

[1] Sivananthan S, Wijewarnasuriya P S, Aqariden F, Vydyanath H R, Zandian M, Edwall D D and Arias J M 1997 emphJ. Electron. Mater. 26 621
[2] Wu O K, Kamath G S, Redford W A, Bratt P R and Pattern E A 1990 emphJ. Vac. Sci. Technol. A 8 1034
[3] Berding M A and Sher A 1999 emphAppl. Phys. Lett. 74 685
[4] Boieriu P, Chen Y and Nathan V 2002 emphJ. Electron. Mater. bf 31 694
[5] Shaw D and Capper P 2008 emphJ. Mater. Sci.: Mater. Electon. bf 19 67
[6] Schaake H F 2001 emphJ. Electron. Mater. 30 789
[7] Tsen G K O, Sewell R H, Atanacio A J, Prince K E, Musca C A, Dell J M and Faraone L 2008 emphSemicond. Sci. Technol. 23 015014
[8] Selamet Y, Grein C H, Lee T S and Sivananthan S 2001 emphJ. Vac. Sci. Technol. B 19 1488
[9] Yue F Y, Chu J H, Wu J, Hu Z G, Li Y W and Yang P X 2008 emphAppl. Phys. Lett. 92 121916
[10] Shao J, Lv X, Guo S L, Lu W, Chen L, Wei Y F, Yang J R, He L and Chu J H 2009 emphPhys. Rev. B 80 155125
[11] He L, Yang J R, Wang S L, Guo S P, Yu M F, Chen X Q, Fang W Z, Qiao Y M, Zhang Y, Ding R J and Xin T L 1997 emph J. Cryst. Growth bf 175/176 677
[12] Monterrat E, Ulmer L, Mallard R, Magnea N and Pautrat J L 1992 emphJ. Appl. Phys. 71 1774
[13] Wu J, Xu F, Wu Y, Chen L, Wang Y, Yu M and He L 2005 emphSPIE 5640 637
[14] Yue F Y, Shao J, L"u X, Huang W, Chu J H, Wu J , Lin X C and He L 2006 emphAppl. Phys. Lett. 89 021912
[15] Yue F Y, Chen L, Wu J, Hu Z G, Li Y W, Yang P X and Chu J H 2009 emphChinese Phys. Lett. 26 047804
[16] Herrmann K H, Mollmann K P and Tomm J W 1992 emphJ. Cryst. Growth 117 758
[17] Chu J H, Xu S C and Tang D Y 1983 emphAppl. Phys. Lett. 43 1064
[18] Yue F Y, Wu J and Chu J H 2008 emphAppl. Phys. Lett. 93 131909
[19] Grein C H, Garland J W, Sivananthan S, Wijewarnasuriya P S, Aqariden F and Fuchs M 1999 emphJ. Electron. Mater. 28 789
[20] Sun L Z, Chen X S, Zhao J J, Wang J B, Zhou Y C and Lu W 2007 emphPhys. Rev. B 76 045219
[21] Elliott R J 1957emph Phys. Rev. 108 1384
[22] Hunter A T, Smith D L and McGill T C 1980 emphAppl. Phys. Lett. bf 37 200
[23] Chang Y, Chu J H, Tang W G, Shen W Z, Li Z Y and Tang D Y 1995 emphActa Phys. Sin. (Oversea Edition) 4 606
[24] Dai N, Chang Y, Wang X G, Li B and Chu J H 2002 emphCurrent Appl. Phys. bf 2 365
[25] Vydyanath H R and Hiner C H 1989 emphJ. Appl. Phys. 65 3080
[26] Ravid A and Zussman A 1990 emphJ. Appl. Phys. 67 4260
[27] Shi X H, Rujirawat S, Ashokan R, Grein C H and Sivananthan S 1998 emphAppl. Phys. Lett. 73 638
[28] Wu J, Xu F F, Wu Y, Chen L,Yu M F and He L 2005 emphJ. Infrared Millim. Waves 24 81
[29] Kenworthy I, Capper P, Jones C L, Gosney J J G and Coates W G 1990 emphSemicond. Sci. Technol. 5 854 endfootnotesize Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy%'
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友). Chin. Phys. B, 2022, 31(11): 116103.
[5] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[6] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[7] Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime. Chin. Phys. B, 2022, 31(7): 077102.
[8] Spin freezing in the van der Waals material Mn2Ga2S5
Jie Shen(沈洁), Xitong Xu(许锡童), Miao He(何苗), Yonglai Liu(刘永来), Yuyan Han(韩玉岩), and Zhe Qu(屈哲). Chin. Phys. B, 2022, 31(6): 067105.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[13] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[14] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[15] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
No Suggested Reading articles found!