INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature |
Yu Fu(付裕)1, Rui-Min Xu(徐锐敏)1, Xin-Xin Yu(郁鑫鑫)2, Jian-Jun Zhou(周建军)2, Yue-Chan Kong(孔月婵)2, Tang-Sheng Chen(陈堂胜)2, Bo Yan(延波)1, Yan-Rong Li(李言荣)1,3, Zheng-Qiang Ma(马正强)4, and Yue-Hang Xu(徐跃杭)1,† |
1 University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Nanjing Electronic Devices Institute, Nanjing 210016, China; 3 Sichuan University, Chengdu 610041, China; 4 University of Wisconsin-Madison, Madison, WI 53705, USA |
|
|
Abstract The interface state of hydrogen-terminated (C-H) diamond metal-oxide-semiconductor field-effect transistor (MOSFET) is critical for device performance. In this paper, we investigate the fixed charges and interface trap states in C-H diamond MOSFETs by using different gate dielectric processes. The devices use Al$_{2}$O$_{3}$ as gate dielectrics that are deposited via atomic layer deposition (ALD) at 80 $^\circ$C and 300 $^\circ$C, respectively, and their $C$-$V$ and $I$-$V$ characteristics are comparatively investigated. Mott-Schottky plots ($1/C^{2}$-$V_{\rm G}$) suggest that positive and negative fixed charges with low density of about 10$^{11}$ cm$^{-2}$ are located in the 80-$^\circ$C- and 300-$^\circ$C deposition Al$_{2}$O$_{3}$ films, respectively. The analyses of direct current (DC)/pulsed $I$-$V$ and frequency-dependent conductance show that the shallow interface traps (0.46 eV-0.52 eV and 0.53 eV-0.56 eV above the valence band of diamond for the 80-$^\circ$C and 300-$^\circ$C deposition conditions, respectively) with distinct density ($7.8 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$-$8.5 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$ and $2.2 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$-$5.1 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$ for the 80-$^\circ$C- and 300-$^\circ$C-deposition conditions, respectively) are present at the Al$_{2}$O$_{3}$/C-H diamond interface. Dynamic pulsed $I$-$V$ and capacitance dispersion results indicate that the ALD Al$_{2}$O$_{3}$ technique with 300-$^\circ$C deposition temperature has higher stability for C-H diamond MOSFETs.
|
Received: 05 October 2020
Revised: 26 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61922021), the National Key Research and Development Project, China (Grant No. 2018YFE0115500), and the Fund from the Sichuan Provincial Engineering Research Center for Broadband Microwave Circuit High Density Integration, China. |
Corresponding Authors:
Yue-Hang Xu
E-mail: yuehangxu@uestc.edu.cn
|
Cite this article:
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭) Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature 2021 Chin. Phys. B 30 058101
|
[1] Kawarada H 1996 Surf. Sci. Rep. 26 205 [2] Geis M W, Wade T C, Wuorio C H, Fedynyshyn T H, Duncan B, Plaut M E, Varghese J O, Warnock S M, Vitale S A and Hollis M A 2018 Phys. Status Solidi A 215 1800681 [3] Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R and Hao Y 2019 Chin. Phys. B 28 128103 [4] Fu Y, Xu R M, Xu Y H, Zhou J J, Wu Y Q, Kong Y C, Zhang Y, Chen T S and Yan B 2018 IEEE Electron Dev. Lett. 39 1704 [5] Verona C, Ciccognani W, Colangeli S, Limiti, Marinelli M and Verona R G 2016 J. Appl. Phys. 120 025104 [6] Hirama K, Sato H, Harada Y, Yamamoto H and Kasu M 2012 Jpn. J. Appl. Phys. 51 090112 [7] Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A and Kawarada H 2017 IEEE Electron Dev. Lett. 38 363 [8] Yu X X, Zhou J J, Qi C J, Cao Z Z, Kong Y Y and Chen T S 2018 IEEE Electron Dev. Lett. 39 1373 [9] Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A and Kawarada H 2019 IEEE Electron Dev. Lett. 40 279 [10] Verona C, Benetti M, Cannata D, Ciccognani W, Colangeli S, Pietrantonio F D, Limiti E, Marinelli M and Verona G R 2019 IEEE Electron Dev. Lett. 40 765 [11] Zhou C J, Wang J J, Guo J C, Yu C, He Z Z, Liu Q B, Gao X D, Cai S J and Feng Z H 2019 Appl. Phys. Lett. 114 063501 [12] Saha N C and Kasu M 2018 Diamond Rel. Mater. 91 219 [13] Hiraiwa A, Saito T, Matsumura D and Kawarada H 2015 J. Appl. Phys. 117 215304 [14] Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J and Y. Hao 2018 AIP Adv. 8 065026 [15] Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111 [16] Vardi A, Tordjman T, del Alamo J A and Kalish R 2014 IEEE Electron Dev. Lett. 35 1320 [17] Daicho A, Saito T, Kurihara S, Hiraiwa A and Kawarada H 2014 J. Appl. Phys. 115 223711 [18] Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M, and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589 [19] Ren Z Y, Lv D D, Xu J M, Zhang J F, Zhang J C, Su K, Zhang C F and Y. Hao 2020 Appl. Phys. Lett. 116 013503 [20] Groner M D, Fabreguette F H, Elam J W and George S M 2004 Chem. Mater. 16 639 [21] Groner M D, Elam J W, Fabreguette F H and George S M 2002 Thin Solid Films 413 186 [22] Liu J W, Oosato H, Da B and Koide Y 2020 Appl. Phys. Lett. 117 163502 [23] Lasia A 2014 Electrochemical Impedance Spectropscopy and itsd Applications (New York: Springer-Verlag) p. 235 [24] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E and Bergonzo P 2003 Appl. Phys. Lett. 82 2266 [25] Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M and Hiraiwa A 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, 483 [26] Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y and Hao Y 2017 Jpn. J. Appl. Phys. 56 100301 [27] Ma X H, Zhu J J, Liao X Y, Yue T, Chen W W and Hao Y 2013 Appl. Phys. Lett. 103 033510 [28] Schroder D K 2006 Semiconductor Material and Device Characterization (New York: Wiley) p. 347 [29] Fu Y, Xu R M, Zhou J J, Yu X X, Wen Z, Kong Y C, Chen T S, Zhang Y, Yan B, He J J and Xu Y H 2019 IEEE Access. 7 76868 [30] Kordoš P, Stoklas R, Gregušová D and Novák J 2009 Appl. Phys. Lett. 94 223512 [31] Martens K, Wang W, De Keersmaecker K, Borghs G, Groeseneken G and Maes H 2007 Microelectronic Engineering 84 2146 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|