Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017304    DOI: 10.1088/1674-1056/19/1/017304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of conjugated polymer-ZnSe nanocrystal nanocomposites

Yun Da-Qin(云大钦)a), Feng Wei(封伟)b), Wu Hong-Cai(吴洪才)a), Liu Xiao-Zeng (刘效增)a), and Qiang Jun-Feng(强军锋)a)
a School of Electrical and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; b School of Materials Science and Engineering, Tianjin University, 300072, China and Tianjin Key; Laboratory of Composite and Functional Materials, Tianjin 300072, China
Abstract  Nanocomposites of poly[(2-methoxy,5-octoxy)1,4-phenylenevinylene]-zinc selenide (MOPPV-ZnSe) are synthesized by mixing the polymerization of 1,4-bis (chloromethyl)-2-methoxy-5-octoxy-benzene in the presence of ZnSe quantum dots. The resulting MOPPV-ZnSe nanocomposites possess a well-defined interfacial contact, thus significantly promoting the dispersion of ZnSe within the MOPPV matrix and facilitating the electronic interaction between these two components. Raman and UV--visible absorption spectra are influenced by the incorporation of ZnSe nanocrystals. High-resolution transmission electron microscopic and tapping-mode atomic force microscopic results show clearly the evidence for phase-segregated networks of ZnSe nanocrystals, which provide a large area of interface for charge separation to occur. Steady-state spectra of MOPPV-ZnSe nanocomposites are markedly quenched by the introduction of intimate polymer/ZnSe junctions. Time-resolved photoluminescence measurements show that the lifetime decays quickly, which further confirms the occurrence of charge transfer in MOPPV-ZnSe nanocomposites.
Keywords:  nanocomposites      interface      time-resolved photoluminescence spectrum      excitons separation  
Received:  15 July 2009      Revised:  04 August 2009      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.30.-j (Infrared and Raman spectra)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  81.07.Bc (Nanocrystalline materials)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  82.35.Cd (Conducting polymers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50873074), Program for New Century Excellent Talents in University of Chinese Education Ministry (Grant No. 060232), Foundation for Key Program of Ministry of Education, China (Grant No. 108029) and Scientific Research Foundation of Xi'an Jiaotong University, China (Grant No. 011092).

Cite this article: 

Yun Da-Qin(云大钦), Feng Wei(封伟), Wu Hong-Cai(吴洪才), Liu Xiao-Zeng (刘效增), and Qiang Jun-Feng(强军锋) Optical properties of conjugated polymer-ZnSe nanocrystal nanocomposites 2010 Chin. Phys. B 19 017304

[1] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[2] Koleilat G I, Levina L, Shukla H, Myrskog S H, Hinds S, Pattantyus-Abraham A G and Sargent E H 2008 ACSNANO 2 833
[3] Feng W, Feng W Y and Wu Z 2005 Jpn. J. Appl. Phys. 44] 4794
[4] Tian R Y, Yang R Q, Peng J B and Cao Y 2005 Chin. Phys. 14 1032
[5] Einosuke K, Seiki K, Akira O, Shinji A and Shinya M 2008 Appl. Phys. Lett. 92 1733071
[6] Feng W, Xu Y L, Yi W H, Zhou F, Wang X G and Yoshino K 2003 Chin. Phys. 12 426
[7] Bartholomew G P and Heeger A J 2005 Adv. Funct. Mater. 15 677
[8] Skaff H, Sill K and Emrick T 2004 J. Am. Chem. Soc. 126 11322
[9] Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-El M, Petrich J W and Lin Z 2007 J. Am. Chem. Soc. 129 12828
[10] Lee W, Shin S, Han S H and Cho B 2008 Appl. Phys. Lett. 92 193307
[11] Deng D W, Qin Y B, Yang X, Yu J S and Pan Y 2006 J. Cryst. Growth 296 141
[12] Neef C J and Ferraris J P 2000 Macromolecules 3323 11
[13] Yun D Q, Feng W, Wu H C, Li B M, Liu X Z, Yi W H, Qiang J F, Gao S and Yan S L 2008 Synth. Met. 158 977
[14] Wu X F, Shi G Q, Zhang J X and Chen F E 2003 J. Polym. Sci. Part A 41 449
[15] Mulazzi E, Ripamonti A, Wery J, Dulieu B and Lefrant S 1999 Phys. Rev. B 60 16519
[16] Nikesh V V, Amit D L, Seiji K, Shinji N and Shailaja M 2006 J. Appl. Phys. 100 1135201
[17] Aarab H, Baitoul M, Wery J, Almairac R, Lefrant R, Faulques E, Duvail J L and Hamedoun M 2005 Synth. Met. 155 63
[18] Yang L, Wu P, Yen H, Zeng L, Zhang Q, Liu X and Gu P 2005 Phys. Stat. Sol. A 202 289
[19] Smilowitz L, Hays A, Heeger A J, Wang G and Bowers J E 1993 J. Chem. Phys. 98 6504
[20] Greenham N C, Peng X G and AliVisatos A P 1997 Synth. Met. 84 545
[21] Ignacio B M, Alex D S and Benjamin J S 2004 Phys. Rev. B 69 035204
[22] Yun D Q, Feng W, Wu H C and Yoshino K 2009 Sol. Energy Mater. Cells 93 1208
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[14] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!