Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083203    DOI: 10.1088/1674-1056/ab99b1
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Transparently manipulating spin-orbit qubit via exact degenerate ground states

Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华)
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  

By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling (SOC) and a specific controlled parameter, we demonstrate an exactly solvable two-level model with a complete set of spin-motion entangled Schrödinger kitten (or cat) states. In the undriven case, application of a modulation resonance results in the exact stationary states. We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging positions of the probability-density wavepackets to create transitions between the different degenerate ground states. The expected energy consisting of quantum and continuous parts is derived, and the energy deviations caused by the exchange operations are much less than the quantum gap. The results could be directly extended to a weakly coupled single-particle chain for transparently encoding spin-orbit qubits via the robust spin-motion entangled degenerate ground states.

Keywords:  transparent coherent control      spin-orbit qubit      exact degenerate ground state      spin-orbit coupling      spin-motion entanglement  
Received:  30 March 2020      Revised:  14 May 2020      Accepted manuscript online: 
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  32.90.+a (Other topics in atomic properties and interactions of atoms with photons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204077 and 11475060), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ10002), the Hunan Provincial Hundred People Plan, China (2019), and the Science and Technology Plan Project of Hunan Province, China.

Corresponding Authors:  Kuo Hai, Kuo Hai     E-mail:  ron.khai@gmail.com;whhai2005@aliyun.com

Cite this article: 

Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华) Transparently manipulating spin-orbit qubit via exact degenerate ground states 2020 Chin. Phys. B 29 083203

[1] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[2] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084
[3] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[4] Pioro-Ladriére M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T and Tarucha S 2008 Nat. Phys. 4 776
[5] Li R, You J Q, Sun C P and Nori F 2013 Phys. Rev. Lett. 111 086805
[6] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[7] Monroe C, Meekhof D M, King B E and Wineland D 1996 Science 272 1131
[8] Kitagawa K, Takayama T, Matsumoto Y, Kato A, Takano R, Kishimoto Y, Bette S, Dinnebier R, Jackeli G and Takagi H 2018 Nature 554 341
[9] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[10] Kato Y, Myers R C, Driscoll D C, Gossard A C, Levy J and Awschalom D D 2003 Science 299 1201
[11] Rashba E I and Efros A L 2003 Phys. Rev. Lett. 91 126405
[12] Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308
[13] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[14] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji SC, Deng Y j, Chen S, Liu X J and Pan J W 2016 Science 354 83
[15] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[16] Hu F Q, Wang J J, Yu Z F, Zhang A X and Xue J K 2016 Phys. Rev. E 93 022214
[17] Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
[18] Zhu C Z, Dong L and Pu H 2016 J. Phys. B 49 145301
[19] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
[20] Sun F X, Zhang W, He Q Y and Gong Q H 2018 Phys. Rev. A 97 012307
[21] Zhang D W, Fu L B, Wang Z D and Zhu S. L 2012 Phys. Rev. A 85 043609
[22] Garcia-March M A, Mazzarella G, Dell'Anna L, Juliá-Díaz B, Salasnich L and Polls A 2014 Phys. Rev. A 89 063607
[23] Sun F, Ye J and Liu W M 2017 New J. Phys. 19 063025
[24] Yang S, Wu F, Yi W and Zhang P 2019 Phys. Rev. A 100 043601
[25] Xie W F, He Y Z and Bao C G 2015 Chin. Phys. B 24 060305
[26] Kong C, Chen H, Li C and Hai W 2018 Chaos 28 023115
[27] Kong C, Luo X, Chen H, Luo Y and Hai W 2019 Chaos 29 103148
[28] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[29] Liu W M and Li J 2018 Acta Phys. Sin. 67 110302(in Chinese)
[30] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[31] Li H and Chen F L 2019 Chin. Phys. B 28 070302
[32] Xu Z F and You L 2012 Phys. Rev. A 85 043605
[33] Tsitsishvili E, Lozano G S and Gogolin A O 2004 Phys. Rev. B 70 115316
[34] Salerno M, Abdullaev F Kh, Gammal A and Tomio L 2016 Phys. Rev. A 94 043602
[35] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[36] Grusdt F, Li T, Bloch I and Demler E 2017 Phys. Rev. A 95 063617
[37] Kartashov Y V, Konotop V V and Vysloukh V A 2018 Phys. Rev. A 97 063609
[38] Soluyanov A A, Gresch D, Troyer M, Lutchyn R M, Bauer B and Nayak C 2016 Phys. Rev. B 93 115317
[39] Combescot M, Shiau S Y and Voliotis V 2019 Phys. Rev. B 99 245202
[40] Liu X J, Borunda M F, Liu X and Sinova J 2009 Phys. Rev. Lett. 102 046402
[41] Guan Q and Blume D 2015 Phys. Rev. A 92 023641
[42] Li C, Ye F, Chen X, Kartashov Y V, Torner L and Konotop V V 2018 Phys. Rev. A 98 061601
[43] Zener C 1932 Proc. R. Soc. A 137 696
[44] Rabi I 1937 Phys. Rev. 51 652
[45] McCall S L and Hahn E L 1969 Phys. Rev. 183 457
[46] Bambini A and Berman P R 1981 Phys. Rev. A 23 2496
[47] Kyoseva E S and Vitanov N V 2005 Phys. Rev. A 71 054102
[48] Xie Q and Hai W 2010 Phys. Rev. A 82 032117
[49] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401
[50] Hai W, Hai K and Chen Q 2013 Phys. Rev. A 87 023403
[51] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128
[52] Li Z, Hai W and Deng Y 2013 Chin. Phys. B 22 090505
[53] Fielding H, Shapiro M and Baumert T 2008 J. Phys. B 41 070201
[54] Wei Y, Kong C and Hai W 2019 Chin. Phys. B 28 056701
[55] Nowak M P and Szafran B 2013 Phys. Rev. B 87 205436
[56] Hai W, Xie Q and Fang J 2005 Phys. Rev. A 72 012116
[57] Lu G, Hai W and Xie Q 2006 J. Phys. A 39 401
[58] Hai K, Luo Y, Chong G, Chen H and Hai W 2017 Quantum Inf. Comput. 17 456
[59] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Sciences 312 83
[60] Kienzler D, Fluhmann C, Negnevitsky V, Lo H Y, Marinelli M, Nadlinger D and Home J P 2016 Phys. Rev. Lett. 116 140402
[61] Cheinet P, Trotzky S, Feld M, Schnorrberger U, Moreno-Cardoner M, Fölling S and Bloch I 2008 Phys. Rev. Lett. 101 090404
[62] Luo Y, Lu G, Kong C and Hai W 2016 Phys. Rev. A 93 043409
[63] Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
[64] Chen Y A, Nascimbene S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[65] Stern A 2010 Nature 464 187
[66] Hai W, Lee C and Zhu Q 2008 J. Phys. B 41 095301
[67] Gardiner S A, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 79 4790
[68] Chen H, Kong C, Hai K and Hai W 2019 Quantum Inf. Proc. 18 379
[69] Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[70] Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C and Monroe C 2010 Phys. Rev. Lett. 104 140501
[71] Cole W S, Zhang S, Paramekanti A and Trivedi N 2012 Phys. Rev. Lett. 109 085302
[72] Xiao J P and An J 2015 New J. Phys. 17 113034
[73] Esmann M, Teichmann N and Weiss C 2011 Phys. Rev. A 83 063634
[74] Goldstein H 1980 Classical Mechanics (New York:Addison-Weslay Publishing Co.) Chap. 10
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!