Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083202    DOI: 10.1088/1674-1056/ab9c0f
INVITED REVIEW Prev   Next  

Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields

Peng-Cheng Li(李鹏程)1,2, Shih-I Chu3
1 Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
2 Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China;
3 Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
Abstract  

We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics of many-electron atomic and molecular systems in intense laser fields. We extend time-dependent generalized pseudospectral (TDGPS) numerical method developed for time-dependent wave equations in multielectron systems. The TDGPS method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spatial grid point for complex quantum dynamical calculations. The usefulness of these procedures is illustrated by a few case studies of atomic and molecular processes of current interests in intense laser fields, including multiphoton ionization, above-threshold ionization, high-order harmonic generation, attosecond pulse generation, and quantum dynamical processes related to multielectron effects. We conclude this paper with some open questions and perspectives of multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields.

Keywords:  multiphoton ionization      above-threshold ionization      high-order harmonic generation      attosecond pulse generation  
Received:  27 April 2020      Revised:  05 June 2020      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674268 and 11764038), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515010927), and Department of Education of Guangdong Province, China (Grant Nos. 2018KCXTD011 and 2019KTSCX037).

Corresponding Authors:  Peng-Cheng Li     E-mail:  pchli@stu.edu.cn

Cite this article: 

Peng-Cheng Li(李鹏程), Shih-I Chu Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields 2020 Chin. Phys. B 29 083202

[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[2] Kulander K C, Schafer K J and Krause J L 1993 Proceedings of the Workshop on Super-Intense Laser Atom Physics (SILAP) III (New York:Plenum Press) 316 95
[3] Lewenstein M, Balcou Ph, Ivanov M Yu, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[4] Popmintchev T, et al., 2012 Science. 336 1287
[5] Parker J S, Moore L R, Dundas D and Taylor K T 2000 J. Phys. B:At. Mol. Opt. Phys. 33 L691
[6] Nikolopoulos L A A and Lambropoulos P 2007 J. Phys. B:At. Mol. Opt. Phys. 40 1347
[7] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. A 45 4998
[8] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[9] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[10] Parr R and Yang W 1989 Density-Function Theory of Atoms and Moleculesm (New York:Oxford University Press)
[11] Dreizler R M and Gross E K U 1990 Density Functional Theory, An Approach to the Quantum Many-Body Problem (Berlin:Springer-Verlag)
[12] Gross E K U and Dreizler R M 1995 Density Functional Theory, NATO Advanced Study Institute, Series B:Physics (New York:Plenum)
[13] March N H 1992 Electron Density Theory of Atoms and Molecules (San Diego:Academic)
[14] Labanowski J K and Andzelm J W 1991 Density Functional Methods in Chemistry (Berlin:Springer-Verlag)
[15] Son S K and Chu S I 2009 Phys. Rev. A 80 011403R
[16] Li P C, Sheu Y L and Chu S I 2020 Phys. Rev. A 101 011401R
[17] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[18] Becke A D 1988 Phys. Rev. A 38 3098
[19] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[20] Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[21] Zhao Q, Parr R G 1992 Phys. Rev. A 46 R5320
[22] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[23] Tong X M and Chu S I 1997 Phys. Rev. A 55 3406
[24] Krieger J B, Li Y and Iafrate G J 1990 Phys. Lett. A 146 256
[25] Krieger J B, Li Y and Iafrate G J 1992 Phys. Rev. A 46 5453
[26] Sharp R T and Horton G K 1953 Phys. Rev. 90 317
[27] Talman J D and Shadwick W F 1976 Phys. Rev. A 14 36
[28] Chen J, Krieger J B, Li Y and Iafrate G J 1996 Phys. Rev. A 54 3939
[29] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[30] Gross E K U and Kohn W 1985 Phys. Rev. Lett. 55 2850
[31] Telnov D and Chu S I 1997 Chem. Phys. Lett. 264 466
[32] Chu S I 1985 Adv. At. Mol. Phys. 21 197
[33] Chu S I 1989 Adv. Chem. Phys. 73 739
[34] Tong X M and Chu S I 1998 Phys. Rev. A 57 452
[35] Joachain C J, Kylstra N J and Potvliege R M 2012 Atoms in intense laser fields (Cambridge:Cambridge University Press)
[36] Han Y C and Madsen L B 2010 Phys. Rev. A 81 063430
[37] Zangwill A and Soven P 1980 Phys. Rev. A 21 1561
[38] Mahan G D and Subbaswamy K R 1990 Local Density Theory of Polarizability (New York:Plenum Press)
[39] Telnov D and Chu S I 2009 Phys. Rev. A 80 043412
[40] Heslar J, Telnov D and Chu S I 2011 Phys. Rev. A 83 043414
[41] Wang J, Chu S I and Laughlin C 1994 Phys. Rev. A 50 3208
[42] Yao G and Chu S I 1993 Chem. Phys. Lett. 204 381
[43] Canuto C, Hussaini M Y, Quarteroni A and Zang T A 1997 Spectral Methods in Fluid Dynamics (Berlin:Springer)
[44] Telnov D and Chu S I 2011 Comput. Phys. Commun. 182 18
[45] Tong X M and Chu S I 1997 Chem. Phys. 217 119
[46] Madsen M M, Peek J M 1971 At. Data 2 171
[47] Feit M D, Fleck J A, Jr and Steiger A 1982 J. Comput. Phys. 47 412
[48] Jiang T F and Chu S I 1992 Phys. Rev. A 46 7322
[49] Hermann M R and Fleck J A, Jr 1988 Phys. Rev. A 38 6000
[50] Keldysh L V 1964 Zh. Eksp Teor. Fiz. 47 1945[1965 Sov. Phys. JETP 20, 1307]
[51] Faisal F H M 1973 J. Phys. B 6 L89
[52] Reiss H R 1980 Phys. Rev. A 22 1786
[53] Madsen C B and Madsen L B 2006 Phys. Rev. A 74 023403
[54] Chen Z, Morishita T, Le A T and Lin C D 2007 Phys. Rev. A 76 043402
[55] Odžak S and Milošević D B 2009 Phys. Rev. A 79 023414
[56] Patchkovskii S, Zhao Z, Brabec T and Villeneuve D M 2006 Phys. Rev. Lett. 97 123003
[57] Santra R and Gordon A 2006 Phys. Rev. Lett. 96 073906
[58] Li P C and Chu S I 2013 Phys. Rev. A 88 053415
[59] Pavičić D, Lee K F, Rayner D M, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001
[60] Thomann I, Lock R, Sharma V, Gagnon E, Pratt S T, Kapteyn H C, Murnane M M and Li W 2008 J. Phys. Chem. A 112 9382
[61] Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478
[62] Tong X M and Chu S I, 2001 Phys. Rev. A 64 013417
[63] Zhou X C, Shi S, Li F, Yang Y J, Chen J, Meng Q T and Wang B B 2019 Chin. Phys. B 28 103201
[64] Grasbon F, Paulus G G, Walther H et al. 2003 Phys. Rev. Lett. 91 173003
[65] Fleischer A, Wörner H J, Arissian L, Liu L R, Meckel M, Rippert A, Dörner R, Villeneuve D M, Corkum P B and Staudte A 2011 Phys. Rev. Lett. 107 113003
[66] Murakami M, Zhang G P and Chu S I 2017 Phys. Rev. A 95 053419
[67] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405(R)
[68] Arbó D G, Yoshida S, Persson E, Dimitriou K I and Burgdorfer J 2006 Phys. Rev. Lett. 96 143003
[69] Li P C, Laughlin C and Chu S I 2014 Phys. Rev. A 89 023431
[70] Li P C, Sheu Y L, Laughlin C and Chu S I 2014 Phys. Rev. A 90 041401R
[71] Li P C, Sheu Y L, Laughlin C and Chu S I 2015 Nat. Commun. 6 7178
[72] Chu X, Chu S I and Laughlin C 2001 Phys. Rev. A 64 013406
[73] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2013 NIST Atomic Spectra Database (ver. 5.1) National Institute of Standards and Technology (Gaithersburg, MD)
[74] Landau L D and Lifshitz E M 1975 The classical theory of fields (New York:Pergamom Press)
[75] Chini M et al. 2014 Nat. Photon. 8 437
[76] Gaarde M B, Tate J L and Schafer K J 2008 J. Phys. B 41 132001
[77] Tosa V, Kim H T, Kim I J and Nam C H 2005 Phys. Rev. A 71 063807
[78] Jin C, Le A T, Trallero-Herrero C A and Lin C D 2011 Phys. Rev. A 84 043411
[79] Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F and Brabec T 1999 Phys. Rev. Lett. 83 2930
[80] Pan Y, Guo F M, Yang Y J and Ding D J 2019 Chin. Phys. B 28 113201
[81] Vozzi C, Negro M, Calegari F, Stagira S, Kovács K and Tosa V 2011 New J. Phys. 13 073003
[82] Balcou P et al. 1997 Phys. Rev. A 55 3204
[83] Pfeifer T et al. 2006 Rep. Prog. Phys. 69 443
[84] Willner A et al., 2011 Phys. Rev. Lett. 107 175002
[85] Hernández-García C, Perez-Hernández J A, Popmintchev T, Murnané M M, Kapteyn H C, Jaron-Becker A, Becker A and Plaja L 2013 Phys. Rev. Lett. 111 033002
[86] Goulielmakis E et al. 2008 Science 320 1614
[87] Sansone G et al. 2006 Science 314 443
[88] Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E and Chang Z H 2008 Phys. Rev. Lett. 100 103906
[89] Zeng B, Chu W, Li G H, Yao J P, Ni J L, Zhang H S, Cheng Y, Xu Z Z, Wu Y and Chang Z H 2012 Phys. Rev. A 85 033839
[90] Takahashi E J, Lan P F, Muecke O D, Nabekawa Y and Midorikawa K 2010 Phys. Rev. Lett. 104 233901
[91] Zeng Z, Cheng Y, Song X, Li R and Xu Z 2007 Phys. Rev. Lett. 98 203901
[92] Wang Z, Li Y, Wang S Y, Hong W Y, Zhang Q B and Lu P X 2013 Phys. Rev. A 87 033822
[93] Mauritsson J, Johnsson P, Gustafsson E, L'Huillier A, Schafer K J and Gaarde M B 2006 Phys. Rev. Lett. 97 013001
[94] Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 011402R
[95] Lan P F, Takahashi E J and Midorikawa K 2010 Phys. Rev. A 82 053413
[96] Wu J, Zhang G T, Xia C L and Liu X S 2010 Phys. Rev. A 82 013411
[97] Li P C, Liu I L and Chu S I 2011 Opt. Express 19 23857
[98] Li P C, Zhou X X, Wang G L and Zhao Z X 2009 Phys. Rev. A 80 053825
[99] Li P C and Chu S I 2012 Phys. Rev. A 86 013411
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[6] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[9] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[10] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[11] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[12] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[13] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[14] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[15] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
No Suggested Reading articles found!