Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106803    DOI: 10.1088/1674-1056/26/10/106803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Interfacial nanobubbles produced by long-time preserved cold water

Li-Min Zhou(周利民)1,4, Shuo Wang(王硕)1,4, Jie Qiu(邱杰)1,3,4, Lei Wang(王磊)1,2, Xing-Ya Wang(王兴亚)1,2,4, Bin Li(李宾)1,2, Li-Juan Zhang(张立娟)1,2, Jun Hu(胡钧)1,2
1. Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2. Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
3. School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Interfacial gaseous nanobubbles which have remarkable properties such as unexpectedly long lifetime and significant potential applications, are drawing more and more attention. However, the recent dispute about the contamination or gas inside the nanobubbles causes a large confusion due to the lack of simple and clean method to produce gas nanobubbles. Here we report a convenient and clean method to effectively produce interfacial nanobubbles based on a pure water system. By adding the cold water cooled at 4 ℃ for more than 48 h onto highly oriented pyrolytic graphite (HOPG) surface, we find that the average density and total volume of nanobubbles are increased to a high level and mainly dominated by the concentrations of the dissolved gases in cold water. Our findings and methods are crucial and helpful for settling the newly arisen debates on gas nanobubbles.

Keywords:  nanobubbles      atomic force microscopy      gas saturation      solubility  
Received:  01 June 2017      Revised:  25 July 2017      Accepted manuscript online: 
PACS:  68.08.-p (Liquid-solid interfaces)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.37.Ps (Atomic force microscopy (AFM))  
  64.75.Bc (Solubility)  
Fund: 

Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019).

Corresponding Authors:  Li-Juan Zhang, Li-Juan Zhang     E-mail:  zhanglijuan@sinap.ac.cn;hujun@sinap.ac.cn

Cite this article: 

Li-Min Zhou(周利民), Shuo Wang(王硕), Jie Qiu(邱杰), Lei Wang(王磊), Xing-Ya Wang(王兴亚), Bin Li(李宾), Li-Juan Zhang(张立娟), Jun Hu(胡钧) Interfacial nanobubbles produced by long-time preserved cold water 2017 Chin. Phys. B 26 106803

[1] Parker J L Y V V and Claesson P M 1994 J. Phys. Chem. 98 8468
[2] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. & Technol. B:Microelectronics and Nanometer Structures 18 2573
[3] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[4] Tyrrell J W and Attard P 2001 Phys. Rev. Lett. 87 176104
[5] Zhang L, Zhao B, Xue L, Guo Z, Dong Y, Fang H, Tai R and Hu J 2013 J. Synchrotron Radiat. 20 413
[6] Chan C U, Chen L, Arora M and Ohl C D 2015 Phys. Rev. Lett. 114 114505
[7] Hain N, Wesner D, Druzhinin S I and Schonherr H 2016 Langmuir 32 11155
[8] Granick S, Zhu Y and Lee H 2003 Nat. Mater. 2 221
[9] Wang Y and Bhushan B 2010 Soft Matter 6 29
[10] Pashley R M, Rzechowicz M, Pashley L R and Francis M J 2005 J. Phys. Chem. B 109 1231
[11] Thomas O C, Cavicchi R E and Tarlov M J 2003 Langmuir 19 6168
[12] Stöckelhuber K W, Radoev B, Wenger A and Schulze H J 2004 Lang-muir 20 164
[13] Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig V S and Hu J 2008 J. Colloid Interface Sci. 328 10
[14] Liu G and Craig V S 2009 ACS Appl. Mater. Interfaces 1 481
[15] Gao L, Ni G X, Liu Y, Liu B, Castro Neto A H and Loh K P 2014 Nature 505 190
[16] Berkelaar R P, Zandvliet H J and Lohse D 2013 Langmuir 29 11337
[17] Wang L, Wang X, Wang L, Hu J, Wang C L, Zhao B, Zhang X, Tai R, He M, Chen L and Zhang L 2017 Nanoscale 9 1078
[18] Sobhy A and Tao D 2013 Int. J. Miner. Process. 124 109
[19] Liu Y and Dillon S J 2014 Chem. Commun. 50 1761
[20] An H, Liu G and Craig V S 2015 Adv. Colloid Interface Sci. 222 9
[21] Zhang X H, Khan A and Ducker W A 2007 Phys. Rev. Lett. 98 136101
[22] Borkent B M, Dammer S M, Schonherr H, Vancso G J and Lohse D 2007 Phys. Rev. Lett. 98 204502
[23] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[24] Zhang L, Zhang X, Zhang Y, Hu J and Fang H 2010 Soft Matter 6 4515
[25] Seddon J R, Kooij E S, Poelsema B, Zandvliet H J and Lohse D 2011 Phys. Rev. Lett. 106 056101
[26] Craig V S J 2011 Soft Matter 7 40
[27] Seddon J R, Zandvliet H J and Lohse D 2011 Phys. Rev. Lett. 107 116101
[28] Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 054501
[29] Lohse D and Zhang X 2015 Rev. Mod. Phys. 87 981
[30] Plesset M S and Sadhal S S 1982 Appl. Sci. Res. 38 133
[31] Ducker W A 2009 Langmuir 25 8907
[32] Petsev N D, Shell M S and Leal L G 2013 Phys. Rev. E 88 010402
[33] Yasui K, Tuziuti T, Kanematsu W and Kato K 2015 Phys. Rev. E 91 033008
[34] Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China G:Phys. Mech. Astron. 51 219
[35] Zhang X, Uddin M H, Yang H, Toikka G, Ducker W and Maeda N 2012 Langmuir 28 10471
[36] German S R, Wu X, An H, Craig V S, Mega T L and Zhang X 2014 ACS Nano 8 6193
[37] Xu C, Peng S, Qiao G G, Gutowski V, Lohse D and Zhang X 2014 Soft Matter 10 7857
[38] Berkelaar R P, Dietrich E, Kip G A, Kooij E S, Zandvliet H J and Lohse D 2014 Soft Matter 10 4947
[39] Lohse D and Zhang X 2015 Phys. Rev. E 91 031003
[40] Liu Y and Zhang X 2013 J. Chem. Phys. 138 014706
[41] Maheshwari S, van der Hoef M, Zhang X and Lohse D 2016 Langmuir 32 11116
[42] Liu Y and Zhang X 2014 J. Chem. Phys. 141 134702
[43] Zhang L J, Wang J, Luo Y, Fang H P and Hu J 2014 Nucl. Sci. Tech. 25 060503
[44] An H, Liu G, Atkin R and Craig V S 2015 ACS Nano 9 7596
[45] Shin D, Park J B, Kim Y J, Kim S J, Kang J H, Lee B, Cho S P, Hong B H and Novoselov K S 2015 Nat. Commun. 6 6068
[46] Lhuissier H, Lohse D and Zhang X 2014 Soft Matter 10 942
[47] Fang C K, Ko H C, Yang C W, Lu Y H and Hwang I S 2016 Sci. Rep. 6 24651
[48] Zhang X H, Zhang X D, Sun J L, Zhang Z X, Li G, Fang H P, Xiao X D, Zeng X C and Hu J 2007 Langmuir 23 1778
[49] Peng H, Hampton M A and Nguyen A V 2013 Langmuir 29 6123
[50] Lu Y H, Yang C W, Fang C K, Ko H C and Hwang I S 2014 Sci. Rep. 4 7189
[51] Zhang L, Zhang X, Fan C, Zhang Y and Hu J 2009 Langmuir 25 8860
[52] Li D, Pan Y, Zhao X and Bhushan B 2016 Langmuir 32 11256
[53] Li D, Jing D, Pan Y, Wang W and Zhao X 2014 Langmuir 30 6079
[54] Zargarzadeh L and Elliott J A 2016 Langmuir 32 11309
[55] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573
[56] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L and Hu J 2004 Langmuir 20 3813
[57] Guo W, Shan H, Guan M, Gao L, Liu M and Dong Y 2012 Surf. Sci. 606 1462
[58] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109
[59] Guan M, Guo W, Gao L, Tang Y, Hu J and Dong Y 2012 Chem. Phys. Chem. 13 2115
[60] An H, Tan B H, Zeng Q and Ohl C D 2016 Langmuir 32 11212
[61] Wang L, Miao X and Pan G 2016 Langmuir 32 11147
[62] Zhao B, Song Y, Wang S, Dai B, Zhang L, Dong Y, Lü J and Hu J 2013 Soft Matter 9 8837
[63] Walczyk W and Schonherr H 2014 Langmuir 30 7112
[64] Wang Y, Wang H, Bi S and Guo B 2016 Sci. Rep. 6 30021
[65] Walczyk W, Hain N and Schonherr H 2014 Soft Matter 10 5945
[66] Guo Z, Liu Y, Xiao Q, Schonherr H and Zhang X 2016 Langmuir 32 751
[67] Wang X, Zhao B, Hu J, Wang S, Tai R, Gao X and Zhang L 2017 Phys. Chem. Chem. Phys. 19 1108
[68] An H, Tan B H and Ohl C D 2016 Langmuir 32 12710
[69] Zhang X H, Maeda N and Craig V S 2006 Langmuir 22 5025
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[3] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[4] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[5] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[6] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[7] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[8] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[9] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[10] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[11] Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy
Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理). Chin. Phys. B, 2017, 26(8): 087701.
[12] Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy
Zhang Yong (张勇), Wang Ye-Liang (王业亮), Que Yan-De (阙炎德), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078104.
[13] Solid solubility and photoluminescence of Y3Al5O12:Ce3+ prepared by using (Y1-xCex)2O3 as precursor
Liu Si-Jia (刘思佳), Peng Tong-Jiang (彭同江), Song Zhen (宋振), Bian Liu (边柳), Song Gong-Bao (宋功保), Liu Quan-Lin (刘泉林). Chin. Phys. B, 2014, 23(4): 048106.
[14] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[15] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo (刘波), Zhang Sen (张森), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Dun Shao-Bo (敦少博), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2013, 22(5): 057105.
No Suggested Reading articles found!