Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078104    DOI: 10.1088/1674-1056/24/7/078104
RAPID COMMUNICATION Prev   Next  

Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy

Zhang Yong (张勇)a, Wang Ye-Liang (王业亮)a b, Que Yan-De (阙炎德)a, Gao Hong-Jun (高鸿钧)a b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

An efficient method based on atomic force microscopy (AFM) has been developed to characterize silicon intercalated graphene grown on single crystalline Ir(111) thin films. By combining analyses of the phase image, force curves, and friction–force mapping, acquired by AFM, the locations and coverages of graphene and silicon oxide can be well distinguished. We can also demonstrate that silicon atoms have been successfully intercalated between graphene and the substrate. Our method gives an efficient and simple way to characterize graphene samples with interacted atoms and is very helpful for future applications of graphene-based devices in the modern microelectronic industry, where AFM is already widely used.

Keywords:  graphene      silicon      intercalation      atomic force microscopy  
Received:  12 March 2015      Revised:  24 March 2015      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  87.64.Dz (Scanning tunneling and atomic force microscopy)  
  68.55.Nq (Composition and phase identification)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600 and 2011CB932700), the National Natural Science Foundation of China (Grant Nos. 61222112, 61390501 and 51325204), and Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

Corresponding Authors:  Wang Ye-Liang     E-mail:  ylwang@iphy.ac.cn

Cite this article: 

Zhang Yong (张勇), Wang Ye-Liang (王业亮), Que Yan-De (阙炎德), Gao Hong-Jun (高鸿钧) Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy 2015 Chin. Phys. B 24 078104

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[3] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[4] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[5] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[6] Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140
[7] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[8] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[10] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[11] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[12] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[13] Pan Y, Shi D X and Gao J 2007 Chin. Phys. 16 3151
[14] Wang W R, Liang C, Li T, Yang H, Lu N and Wang Y L 2013 Chin. Phys. Lett. 30 028102
[15] Feng D J, Huang W Y, Jiang S Z, Ji W and Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese)
[16] Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101
[17] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
[18] Huang L, Xu W Y, Que Y D, Pan Y, Gao M, Pan L D, Guo H M, Wang Y L, Du S X and Gao H J 2012 Chin. Phys. B 21 088102
[19] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
[20] Gsell S, Fischer M, Schreck M and Stritzker B 2009 J. Cryst. Growth 311 3731
[21] Garcia R, Magerle R and Perez R 2007 Nat. Mater. 6 405
[22] Jang P, Xie S S, Pang S J and Gao H J 2002 Appl. Surf. Sci. 191 240
[23] Cleveland J P, Anczykowski B, Schmid A E and Elings V B 1998 Appl. Phys. Lett. 72 2613
[24] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2001 J. Mater. Res. 16 1500
[25] Domnich V and Gogotsi Y 2002 Rev. Adv. Mater. Sci. 3 1
[26] Marsden A J, Phillips M and Wilson N R 2013 Nanotechnology 24
[27] Tamayo J, Gonzalez L, Gonzalez Y and Garcia R 1996 Appl. Phys. Lett. 68 2297
[28] Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H and Bhatia C S 2011 Carbon 49 4070
[29] Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K and Bennewitz R 2009 Phys. Rev. Lett. 102 086102
[30] Choi J S, Kim J S, Byun I S, Lee D H, Lee M J, Park B H, Lee C, Yoon D, Cheong H, Lee K H, Son Y W, Park J Y and Salmeron M 2011 Science 333 607
[31] Fessler G, Eren B, Gysin U, Glatzel T and Meyer E 2014 Appl. Phys. Lett. 104 041910
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!