|
|
Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy |
Zhang Yong (张勇)a, Wang Ye-Liang (王业亮)a b, Que Yan-De (阙炎德)a, Gao Hong-Jun (高鸿钧)a b |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract An efficient method based on atomic force microscopy (AFM) has been developed to characterize silicon intercalated graphene grown on single crystalline Ir(111) thin films. By combining analyses of the phase image, force curves, and friction–force mapping, acquired by AFM, the locations and coverages of graphene and silicon oxide can be well distinguished. We can also demonstrate that silicon atoms have been successfully intercalated between graphene and the substrate. Our method gives an efficient and simple way to characterize graphene samples with interacted atoms and is very helpful for future applications of graphene-based devices in the modern microelectronic industry, where AFM is already widely used.
|
Received: 12 March 2015
Revised: 24 March 2015
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
87.64.Dz
|
(Scanning tunneling and atomic force microscopy)
|
|
68.55.Nq
|
(Composition and phase identification)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600 and 2011CB932700), the National Natural Science Foundation of China (Grant Nos. 61222112, 61390501 and 51325204), and Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100). |
Corresponding Authors:
Wang Ye-Liang
E-mail: ylwang@iphy.ac.cn
|
Cite this article:
Zhang Yong (张勇), Wang Ye-Liang (王业亮), Que Yan-De (阙炎德), Gao Hong-Jun (高鸿钧) Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy 2015 Chin. Phys. B 24 078104
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[3] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[4] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[5] |
Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
|
[6] |
Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140
|
[7] |
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
|
[8] |
Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
|
[9] |
Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
|
[10] |
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[11] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[12] |
Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
|
[13] |
Pan Y, Shi D X and Gao J 2007 Chin. Phys. 16 3151
|
[14] |
Wang W R, Liang C, Li T, Yang H, Lu N and Wang Y L 2013 Chin. Phys. Lett. 30 028102
|
[15] |
Feng D J, Huang W Y, Jiang S Z, Ji W and Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese)
|
[16] |
Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101
|
[17] |
Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
|
[18] |
Huang L, Xu W Y, Que Y D, Pan Y, Gao M, Pan L D, Guo H M, Wang Y L, Du S X and Gao H J 2012 Chin. Phys. B 21 088102
|
[19] |
Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
|
[20] |
Gsell S, Fischer M, Schreck M and Stritzker B 2009 J. Cryst. Growth 311 3731
|
[21] |
Garcia R, Magerle R and Perez R 2007 Nat. Mater. 6 405
|
[22] |
Jang P, Xie S S, Pang S J and Gao H J 2002 Appl. Surf. Sci. 191 240
|
[23] |
Cleveland J P, Anczykowski B, Schmid A E and Elings V B 1998 Appl. Phys. Lett. 72 2613
|
[24] |
Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2001 J. Mater. Res. 16 1500
|
[25] |
Domnich V and Gogotsi Y 2002 Rev. Adv. Mater. Sci. 3 1
|
[26] |
Marsden A J, Phillips M and Wilson N R 2013 Nanotechnology 24
|
[27] |
Tamayo J, Gonzalez L, Gonzalez Y and Garcia R 1996 Appl. Phys. Lett. 68 2297
|
[28] |
Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H and Bhatia C S 2011 Carbon 49 4070
|
[29] |
Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K and Bennewitz R 2009 Phys. Rev. Lett. 102 086102
|
[30] |
Choi J S, Kim J S, Byun I S, Lee D H, Lee M J, Park B H, Lee C, Yoon D, Cheong H, Lee K H, Son Y W, Park J Y and Salmeron M 2011 Science 333 607
|
[31] |
Fessler G, Eren B, Gysin U, Glatzel T and Meyer E 2014 Appl. Phys. Lett. 104 041910
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|