CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Comparative study of electrical characteristics for n-type 4H-SiC planar and trench MOS capacitors annealed in ambient NO |
Zhan-Wei Shen(申占伟)1, Feng Zhang(张峰)1,3, Sima Dimitrijev2, Ji-Sheng Han(韩吉胜)2, Guo-Guo Yan(闫果果)1, Zheng-Xin Wen(温正欣)1, Wan-Shun Zhao(赵万顺)1, Lei Wang(王雷)1, Xing-Fang Liu(刘兴昉)1, Guo-Sheng Sun(孙国胜)1,3, Yi-Ping Zeng(曾一平)1,3 |
1. Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing 100083, China;
2. Queensland Micro-and Nano-technology Center, Griffith University, Nathan 4111, Australia;
3. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The interface properties and electrical characteristics of the n-type 4H-SiC planar and trench metal-oxide-semiconductor (MOS) capacitors are investigated by measuring the capacitance voltage and current voltage. The flat-band voltage and interface state density are evaluated by the quasi-static method. It is not effective on further improving the interface properties annealing at 1250 ℃ in NO ambient for above 1 h due to the increasing interface shallow and fast states. These shallow states reduce the effective positive fixed charge density in the oxide. For the vertical MOS capacitors on the (1120) and (1100) faces, the interface state density can be reduced by approximately one order of magnitude, in comparison to the result of the planar MOS capacitors on the (0001) face under the same NO annealing condition. In addition, it is found that Fowler-Nordheim tunneling current occurs at an oxide electric field of 7 MV/cm for the planar MOS device. However, Poole-Frenkel conduction current occurs at a lower electric field of 4 MV/cm for the trench MOS capacitor. This is due to the local field crowded at the trench corner severely causing the electrons to be early captured at or emitted from the SiO2/SiC interface. These results provide a reference for an in-depth understanding of the mobility-limiting factors and long term reliability of the trench and planar SiO2/SiC interfaces.
|
Received: 01 April 2017
Revised: 07 June 2017
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.50.Gr
|
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113 and 61574140), the Beijing NOVA Program, China (Grant No. Z1611000049161132016071), China Academy of Engineering Physics (CAEP) Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201502), the Beijing Municipal Science and Technology Commission Project, China (Grant Nos. Z161100002116018 and D16110300430000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012098). |
Corresponding Authors:
Feng Zhang
E-mail: fzhang@semi.ac.cn
|
Cite this article:
Zhan-Wei Shen(申占伟), Feng Zhang(张峰), Sima Dimitrijev, Ji-Sheng Han(韩吉胜), Guo-Guo Yan(闫果果), Zheng-Xin Wen(温正欣), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Xing-Fang Liu(刘兴昉), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平) Comparative study of electrical characteristics for n-type 4H-SiC planar and trench MOS capacitors annealed in ambient NO 2017 Chin. Phys. B 26 107101
|
[1] |
Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W 2002 IEEE Trans. Electron. Dev. 49 658
|
[2] |
Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z and Yang F H 2013 Chin. Phys. B 22 097302
|
[3] |
Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201.
|
[4] |
Zhang Y R, Zhang B, Li Z J, Deng X C and Liu X L 2009 Chin. Phys. B 18 3995
|
[5] |
Afanasev V V, Bassler M, Pensl G and Schulz M 1997 Phys. Status Solidi A 162 321.
|
[6] |
Lipkin L A, Das M K and Palmour J W 2002 Mater. Sci. Forum. 389-393 985
|
[7] |
Rudenko T E, Osiyuk I N, Tyagulski I P, Ólafsson H ö and Sveinbjörnsson E ö 2005 Solid-State Electron. 49 545
|
[8] |
Okamoto D, Yano H, Hatayama T and Fuyuki T 2010 Appl. Phys. Lett. 96 203508
|
[9] |
Tang X Y, Song Q W, Zhang Y M, Zhang Y M, Jia R X, Lu H L and Wang Y H 2012 Chin. Phys. B 21 087701
|
[10] |
Tian L X, Zhang F, Shen Z W, Yan G G, Liu X F, Zhao W S, Wang L, Sun G S and Zeng Y P 2016 Chin. Phys. B 25 128104
|
[11] |
Iwasaki Y, Yano H, Hatayama T, Uraoka Y and Fuyuki T 2010 Appl. Phys. Express 3 026201
|
[12] |
Cheong K Y, Moon J, Kim H J, Bahng W and Kim N K 2010 Thin Solid Films 518 3255
|
[13] |
Fiorenza P, Giannazzo F, Vivona M, La Magna A and Roccaforte F 2013 Appl. Phys. Lett. 103 153508
|
[14] |
Allerstam F, Olafsson H O, Gudjonsson G, Dochev D, Sveinbjornsson E O, Rodle T and Jos R 2007 J. Appl. Phys. 101 124502
|
[15] |
Yoshioka H, Nakamura T and Kimoto T 2012 J. Appl. Phys. 111 014502
|
[16] |
Yoshioka H, Nakamura T and Kimoto T 2012 J. Appl. Phys. 112 024520
|
[17] |
Yano H, Hirao T, Kimoto T, Matsunami H, Asano K and Sugawara Y 1999 IEEE Electron. Dev. Lett. 20 611
|
[18] |
Ueoka Y, Shingu K, Yano H, Hatayama T and Fuyuki T 2012 Jpn. J. Appl. Phys. 51 110201
|
[19] |
Kimoto T, Kanzaki Y, Noborio M, Kawano H and Matsunami H 2005 Jpn. J. Appl. Phys. 44 1213
|
[20] |
Nakano Y, Mukai T, Nakamura R, Nakamura T and Kamisawa A 2009 Jpn. J. Appl. Phys. 48 04C100
|
[21] |
Harada S, Ito S, Kato M, Takatsuka A Kojima K, Fukuda K and Okumura H 2010 Mater. Sci. Forum. 645-648 999
|
[22] |
Agarwal A K, Seshadri S and Rowland L B 1997 IEEE Electron. Dev. Lett. 18 592
|
[23] |
Singh R and Hefner A R 2004 Solid-State Electron. 48 1717
|
[24] |
Terman L M 1962 Solid-State Electron. 5 285
|
[25] |
Li H F, Dimitrijev S, Sweatman D and Harrison H 2000 J. Electron. Mater. 29 1027
|
[26] |
Lee K Y, Chang Y H, Huang Y H, Wu S D, Chung C Y, Huang C F and Lee T C 2013 Appl. Surf. Sci. 282 126
|
[27] |
Afanas'ev V V, Stesmans A, Bassler M, Pensl G and Schulz M J 2000 Appl. Phys. Lett. 76 336
|
[28] |
Rozen J, Dhar S, Zvanut M, Williams J and Feldman L 2009 J. Appl. Phys. 105 124506
|
[29] |
Rozen J, Dhar S, Dixit S K, Afanas'ev V V, Roberts F O, Dang H L, Wang S, Pantelides S T, Williams J R and Feldman L C 2008 J. Appl. Phys. 103 124513
|
[30] |
Nanen Y, Kato M, Suda J and Kimoto T 2013 IEEE Trans. Electron. Dev. 60 1260
|
[31] |
Saks N and Agarwal A 2000 Appl. Phys. Lett. 77 3281
|
[32] |
Šimonka V, Hössinger, A, Weinbub Jand Selberherr S 2016 International Conference on Simulation of Semiconductor Processes and Devices, September 6-8, 2016, Nuremberg, Germany, p. 233
|
[33] |
Gupta S K, Azam A and Akhtar J 2011 Pramana-J. Phys. 76 165
|
[34] |
Chanana R, McDonald K, Di Ventra M, Pantelides S, Feldman L, Chung G, Tin C, Williams J and Weller R 2000 Appl. Phys. Lett. 77 2560
|
[35] |
Afanas'ev V, Bassler M, Pensl G, Schulz M and Stein von Kamienski E 1996 J. Appl. Phys. 79 3108
|
[36] |
Cheong K Y, Moon J H, Kim H J, Bahng W and Kim N K 2008 J. Appl. Phys. 103 084113
|
[37] |
Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|