Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦)1,†, Jun-Kai Tong(童君开)1,2,†, and Zhi-Xin Hu(胡智鑫)1,‡
1 Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China; 2 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Abstract Non-contact atomic force microscope is a powerful tool to investigate the surface topography with atomic resolution. Here we propose a new approach to estimate the interaction between its tips and samples, which combines a semi-empirical model with density functional theory (DFT) calculations. The generated frequency shift images are consistent with the experiment for mapping organic molecules using CuCO, Cu, CuCl, and CuOx tips. This approach achieves accuracy close to DFT calculation with much lower computational cost.
(Density functional theory, local density approximation, gradient and other corrections)
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 11804247). VASP Calculations were performed at the High-Performance Computing Platform from Center for Joint Quantum Studies of Tianjin University.
Corresponding Authors:
Zhi-Xin Hu
E-mail: zhixin.hu@tju.edu.cn
Cite this article:
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫) Adaptive semi-empirical model for non-contact atomic force microscopy 2022 Chin. Phys. B 31 088202
[1] Binnig G, Quate, C F, Gi E L and Gerber C 1986 Phys. Rev. Lett.56 930 [2] Liu M X, Li S C, Zha Z Q and Qiu X H 2017 Acta Phys.-Chim. Sin.33 183 (in Chinese) [3] Giessibl F J 2019 Rev. Sci. Instrum.90 011101 [4] Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S and Custance Ó 2007 Nature446 64 [5] Setvín M, Mutombo P, Ondráček M, Majzik Z, Švec M, Cháb V, Ošt'ádal I, Sobotík P and Jelínek P 2012 ACS Nano6 6969 [6] Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H and Gao H J 2021 Acta Phys. Sin.70 136802 (in Chinese) [7] Pang F, Cao F, Lei L, Meng L, Ye S, Xing S, Guo J, Dong H, Hussain S, Gu S, Xu K, Li Y J, Sugawara Y, Ji W, Xu R and Cheng Z 2021 J. Phys. Chem. C125 8696 [8] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A and Meyer G 2012 Science337 1326 [9] Ellner M, Pou P and Pérez R 2019 ACS Nano13 786 [10] Fan D, Sakai Y and Chelikowsky J R 2019 Nano Lett.19 5562 [11] Pawlak R, Kawai S, Fremy S, Glatzel T and Meyer E 2011 ACS Nano5 6349 [12] Albrecht F, Pavliček N, Herranz-Lancho C, Ruben M and Repp J 2015 J. Am. Chem. Soc.137 7424 [13] Guo C S, van Hove M A, Ren X and Zhao Y 2015 J. Phys. Chem. C119 1483 [14] Moll N, Schuler B, Kawai S, Xu F, Peng L, Orita A, Otera J, Curioni A, Neu M, Repp J, Meyer G and Gross L 2014 Nano Lett.14 6127 [15] Weymouth A J, Hofmann T and Giessibl F J 2014 Science343 1120 [16] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science325 1110 [17] Mohn F, Schuler B, Gross L and Meyer G 2013 Appl. Phys. Lett.102 073109 [18] Yesilpinar D, Schulze Lammers B, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H and Mönig H 2021 Small17 2101637 [19] Mönig H, Amirjalayer S, Timmer A, Hu Z, Liu L, Díaz Arado O, Cnudde M, Strassert C A, Ji W, Rohlfing M and Fuchs H 2018 Nature Nanotechnol.13 371 [20] Moll N, Gross L, Mohn F, Curioni A and Meyer G 2010 New J. Phys.12 096102 [21] van der Lit J, di Cicco F, Hapala P, Jelinek P and Swart I 2016 Phys. Rev. Lett.116 125020 [22] Ellner M, Pavliček N, Pou P, Schuler B, Moll N, Meyer G, Gross L and Peréz R 2016 Nano Lett.16 1974 [23] Moll N, Gross L, Mohn F, Curioni A and Meyer G 2012 New J. Phys.14 083023 [24] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B90 085421 [25] Kim M and Chelikowsky J R 2015 Appl. Phys. Lett.107 163109 [26] Zahl P and Zhang Y 2019 Energy Fuels33 4775 [27] Wesolowski T A, Shedge S and Zhou X 2015 Chem. Rev.115 5891 [28] Sakai Y, Lee A J and Chelikowsky J R 2016 Nano Lett.16 3242 [29] Sasaki N, Aizawa H and Tsukada M 2000 Appl. Surf. Sci.157 367 [30] Wright C A and Solares S D 2011 Nano Lett.11 5026 [31] Chan T L, Wang C Z, Ho K M and Chelikowsky J R 2009 Phys. Rev. Lett.102 176101 [32] Castanié F, Nony L, Gauthier S and Bouju X 2012 Beilstein J. Nanotechnol.3 301 [33] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys.132 154104 [35] Blöchl P E 1994 Phys. Rev. B50 17953 [36] Gross L, Schuler B, Mohn F, Moll N, Pavliček N, Steurer W, Scivetti I, Kotsis K, Persson M and Meyer G 2014 Phys. Rev. B90 155455 [37] Mönig H, Hermoso D R, Arado O D, Todorović M, Timmer A, Schüer S, Langewisch G, Pérez R and Fuchs H 2016 ACS Nano10 1201 [38] Fan D, Sakai Y and Chelikowsky J R 2020 Phys. Rev. Mater.4 053802 [39] Timmer A, Möing H, Uphoff M, Arado O D, Amirjalayer S and Fuchs H 2018 Nano Lett.18 4123 [40] Leng C, You S, Si Y B, Qin H M, Liu J, Huang W Q and Li K Q 2021 J. Phys. Chem. A125 2905 [41] Ebeling D, Zhong Q, Schlöder T, Tschakert J, Henkel P, Ahles S, Chi L, Mollenhauer D, Wegner H A and Schirmeisen A 2019 ACS Nano13 324
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.