Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048203    DOI: 10.1088/1674-1056/ab7b54
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study

Jieyun Zheng(郑杰允)1, Jialiang Liu(刘家亮)2, Suijun Wang(王绥军)2, Fei Luo(罗飞)1, Liubin Ben(贲留斌)1, Hong Li(李泓)1
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Operation and Control of Renewable Energy, Storage Systems, China Electric Power Research Institute, Beijing, China
Abstract  Silicon is an important high capacity anode material for the next generation Li-ion batteries. The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase (SEI). It is well known that the addition of flouroethylene carbonate (FEC) in the carbonate electrolyte is helpful to improve the cyclic performance of the Si anode. The possible origin is suggested to relate to the modification of the SEI. However, detailed information is still absent. In this work, the structural and mechanical properties of the SEI on Si thin film anode in the ethylene-carbonate-based (EC-based) and FEC-based electrolytes at different discharging and charging states have been investigated using a scanning atomic force microscopy force spectroscopy (AFMFS) method. Single-layered, double-layered, and multi-layered SEI structures with various Young's moduli have been visualized three dimensionally at nanoscale based on the hundreds of force curves in certain scanned area. The coverage of the SEI can be obtained quantitatively from the two-dimensional (2D) project plots. The related analysis indicates that more soft SEI layers are covered on the Si anode, and this could explain the benefits of the FEC additive.
Keywords:  Si      fluoroethylene carbonate      solid electrolyte interphase      atomic force microscopy force spectroscopy  
Received:  30 December 2019      Revised:  26 February 2020      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the State Grid Technology Project, China (Grant No. DG71-17-010).
Corresponding Authors:  Hong Li     E-mail:  hli@iphy.ac.cn

Cite this article: 

Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓) Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study 2020 Chin. Phys. B 29 048203

[1] Thackeray M M, Wolverton C and Isaacs E D 2012 Energ. Envron. Sci. 5 7854
[2] Scrosati B, Hassoun J and Sun Y K 2011 Energ. Envron. Sci. 4 3287
[3] Lu J, Chen Z, Ma Z, Pan F, Curtiss L A and Amine K 2016 Nat. Nanotechnol. 11 1031
[4] Wang Y and Zhong W H 2015 ChemElectroChem. 2 22
[5] Verma P, Maire P and Novák P 2010 Electrochim. Acta 55 6332
[6] Jaguemont J, Boulon L and Dubé Y 2016 Appl. Energy 164 99
[7] Aravindan V, Lee Y S and Madhavi S 2017 Adv. Energy. Mater. 7 1602607
[8] Li W, Song B and Manthiram A 2017 Chem. Soc. Rev. 46 3006
[9] Ding Y, Mu D, Wu B, Wang R, Zhao Z and Wu F 2017 Appl. Energy 195 586
[10] Schulz N, Hausbrand R, Wittich C, Dimesso L and Jaegermann W 2018 J. Electrochem. Soc. 165 A833
[11] Morales U J E, Bolimowska E, Rouault H, Santos Peña J, Santini C C and Benayad A 2018 J. Phys. Chem. C 122 18223
[12] Sun H H, Dolocan A, Weeks J A, Rodriguez R, Heller A and Mullins C B 2019 J. Mater. Chem. A 7 17782
[13] Peled E and Menkin S 2017 J. Electrochem. Soc. 164 A1703
[14] Yoon T, Milien M S, Parimalam B S and Lucht B L 2017 Chem. Mater 29 3237
[15] Franco A A, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P and Johansson P 2019 Chem. Rev. 119 4569
[16] Li H, Huang X, Chen L, Wu Z and Liang Y 1999 Electrochem. Solid State Lett. 2 547
[17] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y J and Pei N 2000 Solid State Ion 135 181
[18] Zhang C, Gu L, Kaskhedikar N, Cui G and Maier 2013 J ACS Appl. Mater. Interfaces 5 12340
[19] Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C and Liu G 2015 Nano Energy 12 178
[20] Jin Y, Zhu B, Lu Z, Liu N and Zhu J 2017 Adv. Energy Mater. 7 1700715
[21] Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 026102
[22] Xu H, Zhang H, Ma J, Xu G, Dong T, Chen J and Cui G 2019 ACS Energy Lett. 4 2871
[23] Chan C, Ruffo R, Hong S S and Cui Y 2009 J. Power. Sources 189 1132
[24] Dupré N, Moreau P, De Vito E, Quazuguel L, Boniface M, Bordes A, Rudisch C, Bayle G P and Guyomard D 2016 Chem. Mater 28 2557
[25] Wang C, Ouyang L, Fan W, Liu J, Yang L, Yu L and Zhu M 2019 J. Alloys Compd. 805 757
[26] Wang J, Zhang L and Zhang H 2018 Ionics 24 3691
[27] Wang W and Yang S 2017 J. Alloys Compd. 695 3249
[28] Jo H, Kim J, Nguyen D T, Kang K K, Jeon D M, Yang A R and Song S W 2016 J. Phys. Chem. C 120 22466
[29] Nguyen C C and Lucht B L 2018 J. Electrochem. Soc. 165 A2154
[30] Li Q, Liu X, Han X, Xiang Y, Zhong G, Wang J, Zheng B, Zhou J and Yang Y 2019 ACS Appl. Mater. Interfaces 11 14066
[31] Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S and Klose M 2017 Energy Storage Mater. 6 26
[32] Srivastav S, Xu C, Edström K, Gustafsson T and Brandell D 2017 Electrochim. Acta 258 755
[33] Lindgren F, Xu C, Niedzicki L, Marcinek M, Gustafsson T, Björefors F, Edström K and Younesi R 2016 ACS Appl. Mater. Interfaces 8 15758
[34] Schroder K, Alvarado J, Yersak T A, Li J, Dudney N, Webb L J, Meng Y S and Stevenson K J 2015 Chem. Mater. 27 5531
[35] Wu C J, Rath P C, Patra J, Bresser D, Passerini S, Umesh B, Dong Q, Lee T C and Chang J K 2019 ACS Appl. Mater. Interfaces 11 42049
[36] Erickson E M, Markevich E, Salitra G, Sharon D, Hirshberg D, de la Llave E, Shterenberg I, Rosenman A, Frimer A and Aurbach D 2015 J. Electrochem. Soc. 162 A2424
[37] Xu Z, Yang J, Li H, Nuli Y and Wang J 2019 J. Mater. Chem. A 7 9432
[38] Yao K, Zheng J P and Liang R 2018 J. Power. Sources 381 164
[39] Dunn R P, Nguyen C C and Lucht B L 2015 J. Appl. Electrochem 45 873
[40] Men F, Yang Y, Shang Y, Zhang H, Song Z, Zhou Y, Zhou X and Zhan H 2018 J. Power. Sources 401 354
[41] Ababtain K, Babu G, Lin X, Rodrigues M T F, Gullapalli H, Ajayan P M, Grinstaff M W and Arava L M R 2016 ACS Appl. Mater. Interfaces 8 15242
[42] Aurbach D, Zaban A, Ein E Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A and Granot E 1997 J. Power. Sources 68 91
[43] Alliata D, Kötz R, Novák P and Siegenthaler H 2000 Electrochem. Commun. 2 436
[44] Chu A C, Josefowicz J Y and Farrington G C 1997 J. Electrochem. Soc. 144 4161
[45] Jeong S K, Inaba M, Iriyama Y, Abe T and Ogumi Z 2003 J. Power. Sources 119-121 555
[46] Inaba M, Tomiyasu H, Tasaka A, Jeong S K and Ogumi Z 2004 Langmui 20 1348
[47] Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C and Chen L 2015 Nanoscale 7 7651
[48] Becker C R, Strawhecker K E, McAllister Q P and Lundgren C A 2013 Acs. Nano 7 9173
[49] Beaulieu L Y, Hatchard T D, Bonakdarpour A, Fleischauer M D and Dahn J R 2003 J. Electrochem. Soc. 150 A1457
[50] Wang Y H, He Y, Xiao R J, Li H, Aifantis K E and Huang X J 2012 J. Power. Sources 202 236
[51] Zhang J, Yang X, Wang R, Dong W, Lu W, Wu X, Wang X, Li H and Chen L 2014 J. Phys. Chem. C 118 20756
[52] Hu X, Chan N, Martini A and Egberts P 2017 Nanotechnology 28 025702
[53] Han M, Zhu C, Ma T, Pan Z, Tao Z and Chen J 2018 Chem. Commun. 54 2381
[54] He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H and Huang X 2012 J. Power. Sources 216 131
[55] Lee H, Shin W, Choi J W and Park J Y 2012 J. Phys. D 45 275301
[56] La Mantia F and Novák P 2008 Electrochem. Solid State Lett. 11 84
[57] Kircheva N, Genies S, Brun-Buisson D and Thivel P X 2011 J. Electrochem. Soc. 159 A18
[58] Shin J S, Han C H, Jung U H, Lee S I, Kim H J and Kim K 2002 J. Power. Sources 109 47
[59] Domke J and Radmacher M 1998 Langmuir 14 3320
[60] Choi N S, Yew K H, Lee K Y, Sung M, Kim H and Kim S S 2006 J. Power. Sources 161 1254
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[6] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[7] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[8] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[9] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[10] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[11] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[12] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[13] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[14] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[15] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
No Suggested Reading articles found!