Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106802    DOI: 10.1088/1674-1056/26/10/106802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tunable resonant radiation force exerted on semiconductor quantum well nanostructures:Nonlocal effects

Guang-Hui Wang(王光辉)1,2, Xiong-Shuo Yan(颜雄硕)1,2, Jin-Ke Zhang(张金珂)1,2
1. Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China;
2. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
Abstract  

Resonant radiation force exerted on a semiconductor quantum well nanostructure (QWNS) from intersubband transition of electrons is investigated by taking the nonlocal coupling between the polarizability of electrons and applied optical fields into account for two kinds of polarized states. The numerical results show the spatial nonlocality of optical response can induce the spectral peak position of the exerted force to have a blueshift, which is sensitively dependent on the polarized state and the QWNS width. It is also demonstrated that resonant radiation force is controllable by the polarization and incident directions of applied light waves. This work provides effective methods for controlling optical force and manipulating nano-objects, and observing radiation forces in experiment. This nonlocal interaction mechanism can also be used to probe and predominate internal quantum properties of nanostructures, and to manipulate collective behavior of nano-objects.

Keywords:  nonlocal effect      radiation force      quantum well      nanostructure  
Received:  27 March 2017      Revised:  03 July 2017      Accepted manuscript online: 
PACS:  68.65.Fg (Quantum wells)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  45.20.da (Forces and torques)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474106), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439), and the Science and Technology Program of Guangzhou City, China (Grant No. 201707010403).

Corresponding Authors:  Guang-Hui Wang     E-mail:  wanggh@scnu.edu.cn

Cite this article: 

Guang-Hui Wang(王光辉), Xiong-Shuo Yan(颜雄硕), Jin-Ke Zhang(张金珂) Tunable resonant radiation force exerted on semiconductor quantum well nanostructures:Nonlocal effects 2017 Chin. Phys. B 26 106802

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Chaumet P C, Rahmani A and Nieto-Vesperinas M 2002 Phys. Rev. Lett. 88 123601
[3] Chaumet P C, Rahmani A and Nieto-Vesperinas M 2005 Phys. Rev. B 71 045425
[4] Nieto-Vesperinas M, Sáenz J J, Gómez-Medina R and Chantada L 2010 Opt. Express 18 11428
[5] Wong V and Ratner M A 2006 Phys. Rev. B 73 075416
[6] Iida T and Ishihara H 2007 Nanotechnology 18 084018
[7] Lu J H and Wang G H 2016 Chin. Phys. B 25 117804
[8] Ginis V, Tassin P, Soukoulis C M and Veretennicoff I 2013 Phys. Rev. Lett. 110 057401
[9] Chaumet P C and Nieto-Vesperinas M 2000 Opt. Lett. 25 1065
[10] Li Y and Hu Y J 2013 Chin. Phys. B 22 034206
[11] Liu A and Keller O 1995 Phys. Scr. 52 116
[12] Liu A 1997 Phys. Rev. B 55 7101
[13] Wang G H and Wang R Q 2013 Appl. Phys. Lett. 102 021906
[14] Wang G H, Guo Q, Wu L J and Yang X B 2007 Phys. Rev. B 75 205337
[15] Wang C Y and Wang G H 2014 Chin. Phys. B 23 127103
[16] Chang R and Leung P T 2006 Phys. Rev. B 73 125438
[17] McMahon J M, Gray S K and Schatz G C 2009 Phys. Rev. Lett. 103 097403
[18] Pekar S I 1958 Eksp Zh. Teor. Fiz. 34 1176
[19] Cho K 2003 Optical Response of Nanostructures:Microscopic Nonlocal Theory (Berlin:Springer-Verlag) pp. 1-32
[20] Belov P A, Marqués R, Maslovski S I, Nefedov I S, Silveirinha M, Simovski C R and Tretyakov S A 2003 Phys. Rev. B 67 113103
[21] Ishihara H, Cho K, Akiyama K, Tomita N, Nomura Y and Isu T 2002 Phys. Rev. Lett. 89 017402
[22] Luukkonen O, Alitalo P, Costa F, Simovski C, Monorchio A and Tretyakov S 2010 Appl. Phys. Lett. 96 081501
[23] Castaldi G, Galdi V, Alú A and Engheta N 2012 Phys. Rev. Lett. 108 063902
[24] Moreau A, Ciracı C and Smith D R 2013 Phys. Rev. B 87 045401
[25] Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A, and Pendry J B 2013 Phys. Rev. Lett. 111 093901
[26] Jackson J D 1999 Classical Electrodynamics (New York:Willey) p. 3
[27] Zeng J Y 1997 Quantum Mechanics (Beijing:Science Press) pp. 74-93
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[5] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[8] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[9] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[10] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[15] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
No Suggested Reading articles found!