Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮)1 and Ying Jiang(江颖)1,2,3, †
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision. In this perspective, we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope (EC-STM), non-contact atomic force microscopy (NC-AFM), and surface-sensitive vibrational spectroscopies. Different from the ultrahigh vacuum and cryogenic experiments, these techniques are all operated in situ under ambient condition, making the measurements close to the native state of the liquid/solid interface. In the end, we present some perspectives on emerging techniques, which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.
Jiani Hong(洪嘉妮) and Ying Jiang(江颖) Atomic-level characterization of liquid/solid interface 2020 Chin. Phys. B 29 116803
Fig. 1.
(a) The configuration of EC-STM, where the bipotentiostat controls the potential of the substrate (WE1), STM tip (WE2), and counter electrode (CE) with respect to the reference electrode (RE). The majority of STM tip is coated with insulation. (b)–(c) Schematic diagram of the concept of detecting catalytic sites. The tunnelling barrier varies with the change of local environment between the STM tip and sample, arising from the attachment and detachment of reactants and products. Tunnelling-current noise is larger in the case of scanning over a step shown in (c) than that over a terrace in (b), suggesting that step sites are more active than terrace steps, and the noise is reflected on the z-position when STM is operated in constant-current mode. (d) Constant-height STM image of the boundary between a Pd island and Au (111) substrate under hydrogen evolution reaction (HER) conditions in 0.1 M sulfuric acid. (e) Detailed tunnelling-current line scans for the boundary shown in (d). Panels (b)–(e) reproduced with permission from Ref. [92]
Fig. 2.
(a) 3D AFM image of aqueous KCl/mica interface in the case of low molarity (0.2 M KCl). A monolayer of K+ (red color) is absorbed on mica topped by two hydration layers (0.3 nm thick), which follow the corrugation of substrate (lighter stripes). (b) XZ frame of (a) (raw data). The ordered layer at interface is very thin (below 1.0 nm). (c) XY frame taken at z = 0.34 nm. The structure of the water molecules in the 2nd hydration layer is revealed. The origin of z is chosen at the mica surface (minima in (b)). (d) 3D AFM image of aqueous KCl/mica interface for high molarity (4 M KCl). Interfacial layers can be divided into two regions, ordered liquid layers (2 nm thick) and bulk liquid above it. (e) XZ frame of (d) (low pass filtered image). An ordered liquid layer extending up to 2–3 nm from the mica at high molarities is characterized at the interface. The inset shows a filtered image (FFT) of the bottom right corner of the XZ frame. (f) XZ frame extending 5 nm above the mica surface. Reproduced with permission from Ref. [143].
Fig. 3.
(a)–(b) 3D FM-AFM image and MD simulation on the water/clinochlore (001) interface across an area including the T, BII, and BI regions shown in (k), respectively. (c)–(f) Experimental lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layers on T region, respectively. Honeycomb-like pattern of the first hydration layer and a dot-like pattern of the second hydration layer were observed both in AFM experiments and simulations. (g)–(l) Lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layer on BI region, respectively. Atomic-scale patterns of both layers observed in experiments and simulations show the same lattice constant. (k)–(l) Topographic image and structural model around the step edge, respectively. Adsorbed water molecules are represented as red dots in (l). (m) XZ force maps along the broken lines P–Q and R–S in (l). Reproduced with permission from Ref. [158].
Fig. 4.
(a) Illustration of two regions at the charged water interface. (b) OH stretching spectra of the BIL of the lignoceric acid monolayer-water interface at three different pH values. At pH = 2.5 (the neutral interface), a negative OH stretching band below 3350 cm−1 extending beyond 3000 cm−1 dominates, arising from down-pointing OH of water and COOH in the fatty acid headgroups. At pH = 12 (nearly fully deprotonated interface), a broad positive band from 3000 cm−1 to 3450 cm−1 dominates, resulting from up-pointing OH of water molecules donor bonded to O of COO−. (c)–(d) Side-view snapshots of the MD trajectories for the neutral and fully deprotonated fatty acid–water interfaces, respectively. (e) Schematic illustration of in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). (f) Potential-dependent evolution of the hydrogen-bond network of interfacial water. (g) Schematic of the EC-TERS operando measurement. Oxidation OFF state: left, 1.1 V vs. Pd-H. Oxidation ON state: right, 1.45 V vs. Pd-H. (h) Two kinds of EC-TER spectra recorded at different AuOx defect locations and fitted by Gaussian peaks. (i) EC-TERS map in the region of catalytic defects. (j) Schematic illustration of the difference in AuOx peak position. Panels (a)–(d) reproduced with permission from Ref. [179], (e)–(f) reproduced with permission from Ref. [187], and (g)–(j) reproduced with permission from Ref. [195].
[1]
Somorjai G A, Li Y 2010 Introduction to surface chemistry and catalysis John Wiley & Sons
[2]
Wandelt K, Thurgate S 2002 Solid-Liquid Interfaces: Macroscopic Phenomena–-Microscopic Understanding85 Springer Science & Business Media
[3]
Baró A M, Reifenberger R G 2012 Atomic force microscopy in liquid: biological applications John Wiley & Sons
Budevski E B, Staikov G T, Lorenz W J 2008 Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition John Wiley & Sons
[20]
Oviedo O A, Reinaudi L, García S G, Leiva E P M 2016 Underpotential Deposition Springer 91
[21]
Binnig G, Gerber C, Stoll E, Albrecht T, Quate C 1987 Europhys. Lett.3 1281 DOI: 10.1209/0295-5075/3/12/006
Stojek Z 2010 The electrical double layer and its structure Springer 3
[35]
Pham D T, Keller H, Breuer S, Huemann S, Hai N T N, Zoerlein C, Wandelt K, Broekmann P 2009 CHIMIA Int. J. For Chem.63 115 DOI: 10.2533/chimia.2009.115
[36]
Kim Y G, Baricuatro J H, Soriaga M P, Suggs D W 2001 J. Electroanal. Chem.509 170 DOI: 10.1016/S0022-0728(01)00514-9
[37]
Goletti C, Bussetti G, Violante A, Bonanni B, Di Giovannantonio M, Serrano G, Breuer S, Gentz K, Wandelt K 2015 J. Phys. Chem. C119 1782 DOI: 10.1021/jp5073445
Li S S, Northrop B H, Yuan Q H, Wan L J, Stang P J 2009 Acc. Chem. Res.42 249 DOI: 10.1021/ar800117j
[58]
De Feyter S, Miura A, Yao S, Chen Z, Wurthner F, Jonkheijm P, Schenning A P H J, Meijer E W, De Schryver F C 2005 Nano Lett.5 77 DOI: 10.1021/nl048360y
[59]
Zhang X, Chen T, Chen Q, Wang L, Wan L J 2009 Phys. Chem. Chem. Phys.11 7708 DOI: 10.1039/b907557g
[60]
MacLeod J M, Lipton-Duffin J, Fu C, Taerum T, Perepichka D F, Rosei F 2017 ACS Nano11 8901 DOI: 10.1021/acsnano.7b03172
[61]
Gutzler R, Fu C, Dadvand A, Hua Y, MacLeod J M, Rosei F, Perepichka D F 2012 Nanoscale4 5965 DOI: 10.1039/c2nr31648j
[62]
Gutzler R, Ivasenko O, Fu C, Brusso J L, Rosei F, Perepichka D F 2011 Chem. Commun. (Camb)47 9453 DOI: 10.1039/c1cc13114a
Morita S, Giessibl F J, Meyer E, Wiesendanger R 2015 Noncontact atomic force microscopy3 Springer
[100]
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science325 1110 DOI: 10.1126/science.1176210
[101]
Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature577 60 DOI: 10.1038/s41586-019-1853-4
[102]
Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature557 701 DOI: 10.1038/s41586-018-0122-2
[103]
Albrecht T R, Grütter P, Horne D, Rugar D 1991 J. Appl. Phys.69 668 DOI: 10.1063/1.347347
[104]
Mokaberi B, Requicha A A G 2004 IEEE International Conference on Robotics and Automation1–5 416 DOI: 10.1109/ROBOT.2004.1307185
[105]
Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H 2005 Rev. Sci. Instrum.76 053704 DOI: 10.1063/1.1896938
[106]
Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S 2007 Appl. Phys. Lett.90 203103 DOI: 10.1063/1.2739410
[107]
Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A 2011 Rev. Sci. Instrum.82 063704 DOI: 10.1063/1.3600453
Hölscher H, Langkat S M, Schwarz A, Wiesendanger R 2002 Appl. Phys. Lett.81 4428 DOI: 10.1063/1.1525056
[134]
Marutschke C P 2015 Three-Dimensional Imaging of the Solid-Liquid Interface with High-Resolution Atomic Force Microscopy Verlag nicht ermittelbar
[135]
Baykara M Z, Schwendemann T C, Altman E I, Schwarz U D 2010 Adv. Mater.22 2838 DOI: 10.1002/adma.200903909
[136]
Albers B J, Schwendemann T C, Baykara M Z, Pilet N, Liebmann M, Altman E I, Schwarz U D 2009 Nanotechnology20 264002 DOI: 10.1088/0957-4484/20/26/264002
Hosseinpour S, Roeters S J, Bonn M, Peukert W, Woutersen S, Weidner T 2020 Chem. Rev.120 3420 DOI: 10.1021/acs.chemrev.9b00410
[162]
Chen X, Wang J, Sniadecki J J, Even M A, Chen Z 2005 Langmuir21 2662 DOI: 10.1021/la050048w
[163]
Mifflin A L, Velarde L, Ho J, Psciuk B T, Negre C F, Ebben C J, Upshur M A, Lu Z, Strick B L, Thomson R J, Batista V S, Wang H F, Geiger F M 2015 J. Phys. Chem. A119 1292 DOI: 10.1021/jp510700z
[164]
Buchbinder A M, Weitz E, Geiger F M 2009 J. Phys. Chem. C114 554 DOI: 10.1021/jp909172j
Doi T, Inaba M, Tsuchiya H, Jeong S K, Iriyama Y, Abe T, Ogumi Z 2008 J. Power Sources180 539 DOI: 10.1016/j.jpowsour.2008.02.054
[228]
Shen C, Hu G, Cheong L Z, Huang S, Zhang J G, Wang D 2018 Small Methods2 1700298 DOI: 10.1002/smtd.201700298
[229]
Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R 2016 Adv. Energy Mater.6 1600099 DOI: 10.1002/aenm.201600099
[230]
Lacey S D, Wan J, von Wald Cresce A, Russell S M, Dai J, Bao W, Xu K, Hu L 2015 Nano Lett.15 1018 DOI: 10.1021/nl503871s
[231]
Novak P, Joho F, Lanz M, Rykart B, Panitz J C, Alliata D, Kotz R, Haas O 2001 J. Power Sources97-8 39 DOI: 10.1016/S0378-7753(01)00586-9
[232]
Tokranov A, Sheldon B W, Li C, Minne S, Xiao X 2014 ACS Appl. Mater Interfaces6 6672 DOI: 10.1021/am500363t
[233]
Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, Doi T, Abe T, Ogumi Z 2011 J. Phys. Chem. C115 25484 DOI: 10.1021/jp2064672
[234]
Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F 2019 Nat. Nanotechnol.14 50 DOI: 10.1038/s41565-018-0284-y
[235]
Shi Y, Yan H J, Wen R, Wan L J 2017 ACS Appl. Mater Interfaces9 22063 DOI: 10.1021/acsami.7b05613
[236]
Shen C, Wang S, Jin Y, Han W Q 2015 ACS Appl. Mater Interfaces7 25441 DOI: 10.1021/acsami.5b08238
[237]
Lin L, Yang K, Tan R, Li M, Fu S, Liu T, Chen H, Pan F 2017 J. Mater. Chem. A5 19364 DOI: 10.1039/C7TA05469F
[238]
v Cresce A, Russell S M, Baker D R, Gaskell K J, Xu K 2014 Nano Lett.14 1405 DOI: 10.1021/nl404471v
[239]
Wang S, Yang K, Gao F, Wang D, Shen C 2016 RSC Adv.6 77105 DOI: 10.1039/C6RA16208H
[240]
Liu X R, Wang L, Wan L J, Wang D 2015 ACS Appl. Mater Interfaces7 9573 DOI: 10.1021/acsami.5b01024
[241]
Edstrom K, Herranen M 2000 J. Electrochem. Soc.147 3628 DOI: 10.1149/1.1393950
[242]
Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L 2012 Nano Lett.12 2153 DOI: 10.1021/nl300570d
[243]
Chen X, Lai J, Shen Y, Chen Q, Chen L 2018 Adv. Mater.30 1802490 DOI: 10.1002/adma.201802490
[244]
Morozovska A N, Eliseev E A, Balke N, Kalinin S V 2010 J. Appl. Phys.108 053712 DOI: 10.1063/1.3460637
[245]
Jesse S, Balke N, Eliseev E, Tselev A, Dudney N J, Morozovska A N, Kalinin S V 2011 ACS Nano5 9682 DOI: 10.1021/nn203141g
[246]
Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov I N, Dudney N J, Kalinin S V 2010 Nano Lett.10 3420 DOI: 10.1021/nl101439x
[247]
Balke N, Jesse S, Morozovska A N, Eliseev E, Chung D W, Kim Y, Adamczyk L, Garcia R E, Dudney N, Kalinin S V 2010 Nat. Nanotechnol.5 749 DOI: 10.1038/nnano.2010.174
[248]
Yang S, Yan B, Li T, Zhu J, Lu L, Zeng K 2015 Phys. Chem. Chem. Phys.17 22235 DOI: 10.1039/C5CP01999K
[249]
Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett.58 2921 DOI: 10.1063/1.105227
[250]
Zhu J, Zeng K, Lu L 2012 J. Appl. Phys.111 063723 DOI: 10.1063/1.3699214
Hussain H, Tocci G, Woolcot T, Torrelles X, Pang C L, Humphrey D S, Yim C M, Grinter D C, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G 2017 Nat. Mater.16 461 DOI: 10.1038/nmat4793
[253]
Balajka J, Aschauer U, Mertens S F L, Selloni A, Schmid M, Diebold U 2017 J. Phys. Chem. C Nanomater Interfaces121 26424 DOI: 10.1021/acs.jpcc.7b09674
[254]
Newkome G R, Wang P, Moorefield C N, Cho T J, Mohapatra P P, Li S, Hwang S H, Lukoyanova O, Echegoyen L, Palagallo J A, Iancu V, Hla S W 2006 Science312 1782 DOI: 10.1126/science.1125894
[255]
Song B, Kandapal S, Gu J, Zhang K, Reese A, Ying Y, Wang L, Wang H, Li Y, Wang M, Lu S, Hao X Q, Li X, Xu B, Li X 2018 Nat Commun.9 4575 DOI: 10.1038/s41467-018-07045-9
[256]
Zhang Z, Li Y, Song B, Zhang Y, Jiang X, Wang M, Trumbleson R, Liu C, Wang P, Hao X Q, Rojas T, Ngo A T, Sessler J L, Newkome G R, Hla S W, Li X 2020 Nat Chem.12 468 DOI: 10.1038/s41557-020-0454-z
[257]
Song A, Skibinski E S, DeBenedetti W J I, Ortoll-Bloch A G, Hines M A 2016 J. Phys. Chem. C120 9326 DOI: 10.1021/acs.jpcc.6b02132
[258]
Balajka J, Pavelec J, Komora M, Schmid M, Diebold U 2018 Rev. Sci. Instrum.89 083906 DOI: 10.1063/1.5046846
[259]
Balajka J, Hines M A, DeBenedetti W J I, Komora M, Pavelec J, Schmid M, Diebold U 2018 Science361 786 DOI: 10.1126/science.aat6752
[260]
Kraushofer F, Mirabella F, Xu J, Pavelec J, Balajka J, Mullner M, Resch N, Jakub Z, Hulva J, Meier M, Schmid M, Diebold U, Parkinson G S 2019 J. Chem. Phys.151 154702 DOI: 10.1063/1.5116652
[261]
Jakub Z, Kraushofer F, Bichler M, Balajka J, Hulva J, Pavelec J, Sokolović I, Müllner M, Setvin M, Schmid M, Diebold U, Blaha P, Parkinson G S 2019 ACS Energy Lett.4 390 DOI: 10.1021/acsenergylett.8b02324
[262]
Dubochet J, Adrian M, Chang J J, Homo J C, Lepault J, McDowall A W, Schultz P 1988 Q. Rev. Biophys.21 129 DOI: 10.1017/S0033583500004297
[263]
Zachman M J, Asenath-Smith E, Estroff L A, Kourkoutis L F 2016 Microsc. Microanal.22 1338 DOI: 10.1017/S1431927616011892
[264]
Zachman M J, de Jonge N, Fischer R, Jungjohann K L, Perea D E 2019 MRS Bull.44 949 DOI: 10.1557/mrs.2019.289
[265]
Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature560 345 DOI: 10.1038/s41586-018-0397-3
[266]
Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science358 506 DOI: 10.1126/science.aam6014
[267]
Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett.19 5140 DOI: 10.1021/acs.nanolett.9b01515
[268]
Wang J, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y 2019 Nat. Energy4 664 DOI: 10.1038/s41560-019-0413-3
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.