Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057105    DOI: 10.1088/1674-1056/22/5/057105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition

Liu Bo (刘波)a, Zhang Sen (张森)b, Yin Jia-Yun (尹甲运)a, Zhang Xiong-Wen (张雄文)a, Dun Shao-Bo (敦少博)a, Feng Zhi-Hong (冯志红)a, Cai Shu-Jun (蔡树军)a
a Science and Technology on ASIC Laboratory, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b School of Physical and Mathematical Sciences, Nanyang Technology University, Singapore 637371, Singapore
Abstract  The effect of an initially grown high-temperature AlN buffer (HT-AlN) layer's thickness on the quality of an AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated. The characteristics of AlN epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM). It is shown that the crystal quality of the AlN epilayer is closely related to its correlation length. The correlation length is determined by the thickness of the initially grown HT-AlN buffer layer. We find that the optimal HT-AlN buffer thickness for obtaining a high-quality AlN epilayer grown on sapphire substrate is about 20 nm.
Keywords:  AlN epilayer      high-temperature (HT) buffer      atomic force microscopy (AFM)      dislocation  
Received:  10 October 2012      Revised:  25 October 2012      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  78.66.Fd (III-V semiconductors)  
  73.21.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60876009).
Corresponding Authors:  Liu Bo     E-mail:  liub.hsri@foxmail.com

Cite this article: 

Liu Bo (刘波), Zhang Sen (张森), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Dun Shao-Bo (敦少博), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军) Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition 2013 Chin. Phys. B 22 057105

[1] Li D B, Hu W G, Miyake H, Hiramatsu K and Song H 2010 Chin. Phys. B 19 127801
[2] Speck J S and Rosner S J 1999 Physica B 273 24
[3] Ye H, Lu P F, Yu Z Y, Yao W J, Chen Z H, Jia B Y and Liu Y M 2010 Chin. Phys. B 19 047302
[4] Paduano Q S, Weyburne D W, Jasinski J and Liliental-Weber Z 2004 J. Cryst. Growth 261 259
[5] Takeuchi M, Shimizu H, Kajitani R, Kawasaki K, Kumagai Y, Koukitu A and Aoyagi Y 2007 J. Cryst. Growth 298 336
[6] Chen G F, Yang H, Wu Y X, Zhu J J, Zhang S M, Tiang D S, Liu Z S, Zhao D G, Wang H and Wang Y T 2010 Chin. Phys. B 19 036801
[7] Taniyasu Y, Kasu M and Makimoto T 2007 J. Cryst. Growth 298 310
[8] Ren F, Hao Z B, Hu J N, Zhang C and Luo Y 2010 Chin. Phys. B 19 117101
[9] Pantha B N, Dahal R, Nakarmi M L, Nepal N, Li J, Lin J Y, Jiang H X, Paduano Q S and Weyburne D 2007 Appl. Phys. Lett. 90 241101
[10] Lee S R, West A M, Allerman A A, Waldrip K E, Follstaedt D M, Provencio P P, Koleske D D and Abernathy C R 2005 Appl. Phys. Lett. 86 241904
[11] Dunn C G and Koch E F 1957 Acta Metall. 5 548
[12] Zhao Y P, Wang G C and Lu T M 2001 Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (New York: Academic Press)
[13] Pelliccione M, Karrbacak T, Gairre C, Wang G C and Lu T M 2006 Phys. Rev. B 74 125420
[14] Biscarini F, Samori P, Greco O and Zamboni R 1997 Phys. Rev. Lett. 78 2389
[15] Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T and Bandoh A 2007 Jpn. J. Appl. Phys. 46 1458
[16] Imura M, Sugimura H, Okada N, Iwaya M, Kamiyama S, Amano H, Akasaki I and Bando A 2008 Phys. Stat. Sol. (c). 5 1582
[17] Zhao D G, Zhu J J, Liu Z S, Zhang S M, Yang H and Jiang D S 2004 Appl. Phys. Lett. 85 1499
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[6] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[7] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[8] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[9] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[10] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[11] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[12] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
[13] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[14] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[15] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
No Suggested Reading articles found!