Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047301    DOI: 10.1088/1674-1056/23/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Direct measurement of the interfacial barrier height of the manganite p-n heterojunction

Wang Mei (王妹), Wang Deng-Jing (王登京), Wang Ru-Wu (汪汝武), Li Yun-Bao (李云宝)
Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract  A manganite p-n heterojunction composed of La0.67Sr0.33MnO3 film and 0.05 wt% Nb-doped SrTiO3 substrate is fabricated. Rectifying behavior of the junction well described by the Shockley equation is observed, and the transport properties of the interface are experimentally studied. A satisfactorily logarithmic linear dependence of resistance on temperature is observed in a temperature range of 150 K-380 K, and the linear relation between bias and activation energies deduced from the R-1/T curves is observed. According to activation energy, the interfacial barrier of the heterojunction is obtained, which is 0.91 eV.
Keywords:  manganite      heterojunction      interfacial barrier  
Received:  25 July 2013      Revised:  17 October 2013      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Ei (Rectification)  
  75.47.Gk (Colossal magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804089).
Corresponding Authors:  Wang Deng-Jing     E-mail:  d.j.wang@163.com
About author:  73.40.Lq; 73.40.Ei; 75.47.Gk

Cite this article: 

Wang Mei (王妹), Wang Deng-Jing (王登京), Wang Ru-Wu (汪汝武), Li Yun-Bao (李云宝) Direct measurement of the interfacial barrier height of the manganite p-n heterojunction 2014 Chin. Phys. B 23 047301

[1] Sugiura M, Uragou K, Noda M, Tachiki M and Kobayashi T 1999 Jpn. J. Appl. Phys., Part 1 38 2675
[2] Sun J R, Shen B G, Sheng Z G and Sun Y P 2004 Appl. Phys. Lett. 85 3375
[3] Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502
[4] Sheng Z G, Zhao B C, Song W H, Sun Y P, Sun J R and Shen B G 2005 Appl. Phys. Lett. 87 242501
[5] Chen Y F, Ziese M and Esquinazi P 2007 J. Appl. Phys. 101 123906
[6] Yajima T, Hikita Y and Hwang H Y 2011 Nat. Mater. 10 198
[7] Sawa A, Fujii T, Kawasaki M and Tokurad Y 2005 Appl. Phys. Lett. 86 112508
[8] Cuellar F A, Sanchez-Santolino G, Varela M, Clement M, Iborra E, Sefrioui Z, Santamaria J and Leon C 2012 Phys. Rev. B 85 245122
[9] Xie Y W, Guo D F, Sun J R and Shen B G 2010 Chin. Phys. B 19 117306
[10] Postma F M, Ramaneti R, Banerjee T, Gokcan H, Haq E, Blan kDHA, Jansen R and Lodder J C 2004 J. Appl. Phys. 95 7324
[11] Lü W M, Sun J R, Wang D J, Xie Y W, Liang S, Chen Y Z and Shen B G 2008 Appl. Phys. Lett. 92 062503
[12] Wang D J, Sun J R, Lü W M, Xie Y W, Liang S and Shen B G 2007 J. Phys. D: Appl. Phys. 40 5075
[13] Wang D J, Xie Y W, Xiong C M, Shen B G and Sun J R 2006 Europhys. Lett. 73 401
[14] Sze S M 1998 Physics of Semiconductor Devices, 2nd edn. (New York: Wiley)
[15] Anderson R L 1962 Solid-State Electron. 5 341
[16] Lü W M, Wei A D, Sun J R, Chen Y Z and Shen B G 2009 Appl. Phys. Lett. 94 082506
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[9] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
No Suggested Reading articles found!