Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047302    DOI: 10.1088/1674-1056/23/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

Mahmoud Samadpoura, Azam Iraji zadb c, Mehdi Molaeid
a Department of Physics, Faculty of Science, K. N. Toosi University of Technology, P. O. Box 15418-49611, Tehran, Iran;
b Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P. O. Box 11155-8639, Tehran, Iran;
c Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran;
d Department of Physics, Faculty of Science,Vali-e-Asr University, Rafsanjan, Iran
Abstract  TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4-to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (Voc=497 mV, Jsc=11.32 mA/cm2, FF=0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells.
Keywords:  solar cell      nanorod      quantum dot      scattering  
Received:  29 July 2013      Revised:  02 September 2013      Accepted manuscript online: 
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
Corresponding Authors:  Mahmoud Samadpour, Azam Iraji zad     E-mail:  samadpour@kntu.ac.ir;iraji@sharif.edu
About author:  73.50.Pz; 73.50.Gr; 81.07.-b; 82.47.Jk

Cite this article: 

Mahmoud Samadpour, Azam Iraji zad, Mehdi Molaei Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells 2014 Chin. Phys. B 23 047302

[1] Bisquert J, Cahen D, Hodes G, Rühle S and Zaban A 2004 J. Phys. Chem. B 108 8106
[2] Tao X B, Xue Z B, Jing B, Qing Z, Biao L Y, Min C W and Jun C 2008 Chin. Phys. B 17 3713
[3] Jian L P, Kai C, Fu C Y, Gao W Z, Xin H, Bo L J, Rui H J and Li Z W 2012 Chin. Phys. B 21 118101
[4] Hodes G 2008 J. Phys. Chem. C 112 17778
[5] Kamat P V 2008 J. Phys. Chem. C 112 18737
[6] Kamat P V, Tvrdy K, Baker D R and Radich J G 2010 Chem. Rev. 110 6664
[7] Mora-Seró I and Bisquert J 2010 J. Phys. Chem. Lett. 1 3046
[8] Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T and Bisquert J 2009 Accounts of Chemical Research 42 1848
[9] O'Regan B and Grätzel M 1991 Nature 353 737
[10] Rühle S, Shalom M and Zaban A 2010 Chem. Phys. Chem. 11 2290
[11] Alivisatos A P 1996 Science 271 933
[12] Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 2854
[13] Ellingson R J, Beard M C, Johnson J C, Yu P, Micic O I, Nozik A J, Shabaev A and Efros A L 2005 Nano Lett. 5 865
[14] Sambur J B, Novet T and Parkinson B A 2010 Science 330 63
[15] Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601
[16] Samadpour M, Boix P P, Giménez S, Iraji Zad A, Taghavinia N, Mora-Seró I and Bisquert J 2011 J. Phys. Chem. C 115 14400
[17] Y L Lee and Y S Lo 2009 Adv. Func. Mater. 19 604
[18] Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T and Bisquert J 2009 Acc. Chem. Res. 42 1848
[19] Shen Q, Kobayashi J, Diguna L J and Toyoda T 2008 J. Appl. Phys. 103 084304
[20] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[21] Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[22] Robel I, Subramanian V, Kuno M and Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[23] Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M and Nazeeruddin M K 2009 Langmuir 25 7602
[24] Lee Y L and Chang C H 2008 J. Power Sources 185 584
[25] Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A and Sun L 2011 J. Am. Chem. Soc. 133 8458
[26] Yu Z, Zhang Q, Qin D, Luo Y, Li D, Shen Q, Toyoda T and Meng Q 2010 Electrochem. Commun. 12 1776
[27] Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I and Bisquert J 2011 J. Am. Chem. Soc. 133 20156
[28] Yang Z, Chen C Y, Liu C W, Li C L and Chang H T 2011 Adv. Energy Mater. 1 259
[29] Deng M, Huang S, Zhang Q, Li D, Luo Y, Shen Q, Toyoda T and Meng Q 2010 Chem. Lett. 39 1168
[30] Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S and Zaban A 2011 J. Phys. Chem. C 115 6162
[31] Seol M, Ramasamy E, Lee J and Yong K 2011 J. Phys. Chem. C 115 22018
[32] Fang B, Kim M, Fan S Q, Kim J H, Wilkinson D P, Ko J and Yu J S 2011 J. Mater. Chem. 21 8742
[33] Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[34] Zhang Q, Guo X, Huang X, Huang S, Li D, Luo Y, Shen Q, Toyoda T and Meng Q 2011 Phys. Chem. Chem. Phys. 13 4659
[35] González-Pedro V, Xu X, Mora-Seró I and Bisquert J 2010 ACS Nano 4 5783
[36] Barbé J C, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V and Grätzel M 1997 J. Am. Ceram. Soc. 80 3157
[37] Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K and Grätzel M 2008 Thin Solid Films 516 4613
[38] Guijarro N, Lana-Villarreal T, Shen Q, Toyoda T and Gómez R 2010 J. Phys. Chem. C 114 21928
[39] Sudhagar P, Jung J H, Park S, Lee Y G, Sathyamoorthy R, Kang Y S and Ahn H 2009 Electrochem. Commun. 11 2220
[40] Sudhagar P, Song T, Lee D H, Mora-Seró I, Bisquert J, Laudenslager M, Sigmund W M, Park Won Il, Paik U and Kang Y S 2011 J. Phys. Chem. Lett. 2 1984
[41] Samadpour M, Giménez S, Iraji-Zad A, Taghavinia N and Mora-SeróI 2012 Phys. Chem. Chem. Phys. 14 522
[42] Samadpour M, Giménez S, Boix P P, Shen Q, Calvo M E, Taghavinia N, Iraji-Zad A, Toyoda T, Míguez H and Mora-Seró I 2012 Electrochimica Acta 75 139
[43] Samadpour M, Taghavinia N, Iraji-Zad A, Marandi M and Tajabadi F 2012 Euro. Phys. J: Appl. Phys. 57 20401
[44] Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M and Nazeeruddin M K 2009 Nano Lett. 9 4221
[45] Lee H J, Bang J, Park J, Kim S and Park S M 2010 Chem. Mater. 22 5636
[46] Shen Q, Kobayashi J, Diguna L J and Toyoda T 2008 J. Appl. Phys. 103 084304
[47] Hodes G, Manassen J and Cahen D 1980 J. Electrochem. Soc. 127 544
[48] Bisquert, J, Zaban A, Greenshtein M and Mora-Seró I 2004 J. Am. Chem. Soc. 126 13550
[49] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G and Hagfeldt A 2005 Solar Energy Materials and Solar Cells 87 117
[50] Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I and Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083
[51] Barea E M, Shalom M, Giménez S, Hod I, Mora-Seró I, Zaban A and Bisquert J 2010 J. Am. Chem. Soc. 132 6834
[52] Braga A, Giménez S, Concina I, Vomiero A and Mora-Seró I 2011 J. Phys. Chem. Lett. 2 454
[53] Hod I, González-Pedro V, Tachan Z, Fabregat-Santiago F, Mora-Seró I, Bisquert J and Zaban A 2011 J. Phys. Chem. Lett. 2 3032
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[6] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[7] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[8] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[9] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[12] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
No Suggested Reading articles found!