Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117305    DOI: 10.1088/1674-1056/ac7290
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation

Yan Liu(刘妍)1, Ping Wang(王平)1,†, Ting Yang(杨婷)1, Qian Wu(吴茜)1, Yintang Yang(杨银堂)2, and Zhiyong Zhang(张志勇)3
1 State Key Laboratory of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China;
2 Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The steady-state and transient electron transport properties of $\beta $-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructures were investigated by Monte Carlo simulation with the classic three-valley model. In particular, the electronic band structures were acquired by first-principles calculations, which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas (2DEG), and the quantization effect was considered in the $\varGamma $ valley with the five lowest subbands. Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger-Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered. The simulated low-field electron mobilities agree well with the experimental results, thus confirming the effectiveness of our models. The results show that the room temperature electron mobility of the $\beta $-(Al$_{0.188}$Ga$_{0.812}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure at 10 kV$ \cdot$cm$^{-1}$ is approximately 153.669 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, and polar optical phonon scattering would have a significant impact on the mobility properties at this time. The region of negative differential mobility, overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it. This work offers significant parameters for the $\beta$-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure that may benefit the design of high-performance $\beta$-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure-based devices.
Keywords:  electron transport      first-principles calculations      Monte Carlo simulation  
Received:  26 February 2022      Revised:  19 May 2022      Accepted manuscript online:  24 May 2022
PACS:  73.40.-c (Electronic transport in interface structures)  
  73.63.Hs (Quantum wells)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474090), the Key Research and Development Program of Shaanxi Province of China (Grant No. 2017ZDXM-GY-052), and the Fundamental Research Funds for the Central Universities (Grant No. 20109205456), and the Innovation Fund of Xidian University.
Corresponding Authors:  Ping Wang     E-mail:  pingwang@xidian.edu.cn

Cite this article: 

Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇) Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation 2022 Chin. Phys. B 31 117305

[1] Sun W M, Sun B Y, Li Shan, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z and Tang W H 2022 Chin. Phys. B 31 024205
[2] Qian L X, Gu Z, Huang X, Liu H, Lv Y, Feng Z and Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837
[3] Nishinaka H, Nagaoka T, Kajita Y and Yoshimoto M 2021 Mater. Sci. Semicond. Process. 128 105732
[4] Bauman D A, Panov D I, Zakgeim D A, Spiridonov V A, Kremleva A V, Petrenko A A, Smirnov A M, Odnoblyudov M A, Bougrov V E and Romanov A E 2021 Phys. Status Solidi A 218 2100335
[5] Zhang Z C, Wu Y, Lu C and Ahmed S S 2018 13th IEEE Nanotechnol. Mater. Devices Conf. October 14-17, 2018 Portland Or United States pp. 1-4
[6] Fares C, Ren F, Hays D C, Gila B P, Tadjer M, Hobart K D and Pearton S J 2018 Appl. Phys. Lett. 113 182101
[7] Ghadi H, McGlone J F, Feng Z, Bhuiyan A F, Zhang Y, Zhao H, Armstrong A, Burns G R, Vizkelethy G, Bielejec E, Arehart A R and Ringel S A 2021 Oxide-based Materials and Devices XII, March 6-11, 2021 United States, pp. 31-37
[8] Vaidya A, Sarker J, Zhang Y, Lubecki L, Wallace J, Poplawsky J D, Sasaki K, Kuramata A, Goyal A, Gardella J A, Mazumder B and Singisetti U 2019 J. Appl. Phys. 126 095702
[9] Lyman J E and Krishnamoorthy S 2020 J. Appl. Phys. 127 173102
[10] Kaun S W, Wu F and Speck J S 2015 J. Vac. Sci. Technol. A 33 041508
[11] Patnaik A, Jaiswal N K, Singh R and Sharma P 2022 Semicond. Sci. Technol. 37 025002
[12] Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S and Rajan S 2017 Appl. Phys. Lett. 111 023502
[13] Zhang Y, Neal A, Xia Z, Joishi C, Johnson J M, Zheng Y, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P and Rajan S 2018 Appl. Phys. Lett. 112 173502
[14] Zhang Y, Joishi C, Xia Z, Benner M, Lodha S and Rajan S 2018 Appl. Phys. Lett. 112 233503
[15] Zhang Y, Xia Z, McGlone J, Sun W, Joishi C, Arehart A R, Ringel S A and Rajan S 2019 IEEE Trans. Electron Devices 66 1574
[16] Kalarickal N K, Xia Z, McGlone J F, Liu Y, Moore W, Arehart A R, Ringel S A and Rajan S 2020 J. Appl. Phys. 127 215706
[17] Ranga P, Rishinaramangalam A, Varley J, Bhattacharyya A, Feezell D and Krishnamoorthy S 2019 Appl. Phys. Express 12 111004
[18] Vogt P, Mauze A, Wu F, Bonef B and Speck J S 2018 Appl. Phys. Express 11 115503
[19] Ranga P, Bhattacharyya A, Chmielewski A, Roy S, Sun R, Scarpulla M A, Alem N and Krishnamoorthy S 2021 Appl. Phys. Express 14 025501
[20] Ghosha K and Singisetti U 2017 J. Mater. Res. 32 4142
[21] Kumar A, Ghosha K and Singisetti U 2020 J. Appl. Phys. 128 105703
[22] Hamaguchi C, Miyatsuji K and Tanimoto H 1986 High-Speed Electronics (Vol. 22) (Berlin, Heidelberg: Springer) pp. 112-115
[23] He J, Wang P, Chen H, Guo X, Guo L and Yang Y 2017 Appl. Phys. Express 10 011101
[24] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
[25] Peelaers H and Walle C G V 2015 Phys. Status Solidi B Basic Res. 252 828
[26] Liu J, Gao S, Li W, Dai J, Suo Z and Suo Z 2022 Cryst. Res. Technol. 57 2100126
[27] Xiao H, Shao G, Sai Q, Xia C, Zhou S and Yi X 2016 J. Inorg. Mater. 31 1258
[28] Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J R, Varley J B and Walle C G V 2010 Appl. Phys. Lett. 97 211903
[29] Ma N, Tanen N, Verma A, Guo Z, Luo T F, Xing H L and Jena D 2016 Appl. Phys. Lett. 109 212101
[30] Ghosh K and Singisetti U 2019 Gallium Oxide (1st edn.) (Netherlands: Elsevier) pp. 149-168
[31] Peelaers H, Varley J B, Speck J S and Walle C G 2018 Appl. Phys. Lett. 112 242101
[32] Jena D and Konar A 2007 Phys. Rev. Lett. 98 136805
[33] Chen H Y, Wang P, Cheng J S, Li Z L, Guo L X and Zhang Z Y 2017 IEEE Trans. Electron Devices 64 2148
[34] Ghosh K and Singisetti U 2017 J. Appl. Phys. 122 035702
[35] Ng K K 2009 Complete Guide to Semiconductor Devices (2nd edn.) (Piscataway: IEEE Press) pp. 595-646
[36] Fauquembergue R, Zimmermann J, Kaszynski A, Constant E and Microondes G 1980 J. Appl. Phys. 51 1065
[37] Brunetti R, Jacoboni C, Nava F, Reggiani L, Bosman G and Zijlstra R J J 1981 J. Appl. Phys. 52 6713
[38] Fauquembergue R, Zimmermann J, Kaszynski A, Constant E and Microondes G 1980 J. Appl. Phys. 51 1065
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[15] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
No Suggested Reading articles found!