Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118802    DOI: 10.1088/1674-1056/ac8349
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev   Next  

TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells

Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯)
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The electron transport layer (ETL) plays an important role on the performance and stability of perovskite solar cells (PSCs). Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks. Here, an ultrathin SnO2 layer of ~ 5 nm deposited by atomic layer deposit (ALD) was used to construct a TiO2/SnO2 double ETL, improving the power conversion efficiency (PCE) from 18.02% to 21.13%. The ultrathin SnO2 layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface, promoting charge extraction and transfer. The ultrathin SnO2 layer also passivates the ETL/perovskite interface, suppressing nonradiative recombination. The double ETL achieves outstanding stability compared with PSCs with TiO2 only ETL. The PSCs with double ETL retains 85% of its initial PCE after 900 hours illumination. Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.
Keywords:  atomic layer deposit      TiO2      SnO2      electron transport layer      stability  
Received:  12 June 2022      Revised:  20 July 2022      Accepted manuscript online:  22 July 2022
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: This work is supported by the National Key R&D Program of China (Grant No. 2019YFB1503201), the National Natural Science Foundation of China (Grant Nos. 52172238, 52102304, 51902264, and 51902177), the Natural Science Foundation of Shanxi Province, China (Grant No. 2020JM-093), Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-014), Science Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20190807111605472), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019JC0005 and G2021KY05103).
Corresponding Authors:  Zhen Li     E-mail:  lizhen@nwpu.edu.cn

Cite this article: 

Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯) TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells 2022 Chin. Phys. B 31 118802

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[3] Li C, Wang Z S, Zhu H L, Zhang D, Cheng J Q, Lin H, Ouyang D and Choy W C H 2018 Adv. Energy Mater. 8 1801954
[4] Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K and Yan Y F 2018 Nat. Energy 3 1093
[5] Luo C, Zhao Y, Wang X, Gao F and Zhao Q 2021 Adv. Mater. 33 2103231
[6] Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen H T, Wen J, Wei M, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent E H and Tan H 2020 Nat. Energy 5 870
[7] Zhu L, Zhang X, Li M, Shang X, Lei K, Zhang B, Chen C, Zheng S, Song H and Chen J 2021 Adv. Energy Mater. 11 2100529
[8] Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J and Il Seok S 2021 Nature 598 444
[9] Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A and Gratzel M 2016 Nat. Energy 1 16142
[10] Li S S, Chang C H, Wang Y C, Lin C W, Wang D Y, Lin J C, Chen C C, Sheu H S, Chia H C, Wu W R, Jeng U S, Liang C T, Sankar R, Chou F C and Chen C W 2016 Energy Environ. Sci. 9 1282
[11] Liu Z, Qiu L, Juarez-Perez E J, Hawash Z, Kim T, Jiang Y, Wu Z, Raga S R, Ono L K, Liu S F and Qi Y 2018 Nat. Commun. 9 3880
[12] Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A and Han L Y 2016 Nat. Energy 1 16148
[13] Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S, Hofkens J, Yu D, Zhao Q and Sargent E H 2018 Nat. Commun. 9 1607
[14] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y and Yang Y 2018 Nat. Commun. 9 3021
[15] Liu T, Zhou Y, Li Z, Zhang L, Ju M G, Luo D, Yang Y, Yang M, Kim D H and Yang W 2018 Adv. Energy Mater. 8 1800232
[16] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M and Gruverman A 2016 Energy Environ. Sci. 9 1752
[17] Zong Y, Zhou Z, Chen M, Padture N P and Zhou Y 2018 Adv. Energy Mater. 8 1800997
[18] Long C Y, Wang N, Huang K Q, Li H Y, Liu B and Yang J L 2020 Chin. Phys. B 29 048801
[19] Abuhelaiqa M, Paek S, Lee Y, Cho K T, Heo S, Oveisi E, Huckaba A J, Kanda H, Kim H, Zhang Y, Humphry-Baker R, Kinge S, Asiri A M and Nazeeruddin M K 2019 Energy Environ. Sci. 12 1910
[20] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Gratzel M 2017 Science 358 768
[21] Chen W, Xu L, Feng X, Jie J and He Z 2017 Adv. Mater. 29 1603923
[22] Hou Y, Du X, Scheiner S, McMeekin D P, Wang Z, Li N, Killian M S, Chen H, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger N A, Hirsch A, Schmuki P, Steinruck H P, Fink R H, Halik M, Snaith H J and Brabec C J 2017 Science 358 1192
[23] Kim Y C, Yang T Y, Jeon N J, Im J, Jang S, Shin T J, Shin H W, Kim S, Lee E, Kim S, Noh J H, Seok S I and Seo J 2017 Energy Environ. Sci. 10 2109
[24] Li X, Yang J, Jiang Q, Lai H, Li S, Xin J, Chu W and Hou J 2018 ACS Nano 12 5605
[25] Tu B, Shao Y, Chen W, Wu Y, Li X, He Y, Li J, Liu F, Zhang Z, Lin Y, Lan X, Xu L, Shi X, Ng A M C, Li H, Chung L W, Djurisic A B and He Z 2019 Adv. Mater. 31 1805944
[26] Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Horantner M T, Wang J T, Li C Z, Jen A K, Lee T L and Snaith H J 2015 J. Phys. Chem. Lett. 6 2399
[27] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S and Liu S F 2018 Nat. Commun. 9 3239
[28] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 048802
[29] Hou S, Shi B, Wang P, Li Y, Zhang J, Chen P, Chen B, Hou F, Huang Q, Ding Y, Li Y, Zhang D, Xu S, Zhao Y and Zhang X 2020 Chin. Phys. B 29 078801
[30] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[31] Giordano F, Abate A, Correa Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin M K, Hagfeldt A and Graetzel M 2016 Nat. Commun. 7 10379
[32] Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X and Zhao X 2014 ACS Appl. Mater. Interfaces 6 15959
[33] Li C, Li Y, Xing Y, Zhang Z, Zhang X, Li Z, Shi Y, Ma T, Ma R, Wang K and Wei J 2015 ACS Appl. Mater. Interfaces 7 15117
[34] Lu H, Tian W, Gu B, Zhu Y and Li L 2017 Small 13 1701535
[35] Jiang Q, Zhang X and You J 2018 Small 14 1801154
[36] Kim J, Kim K S and Myung C W 2020 npj Comput. Mater. 6 100
[37] Li Z, Wang Z, Jia C, Wan Z, Zhi C, Li C, Zhang M, Zhang C and Li Z 2022 Nano Energy 94 106919
[38] Tavakoli M M, Yadav P, Tavakoli R and Kong J 2018 Adv. Energy Mater. 8 1800794
[39] Xie H, Yin X, Liu J, Guo Y, Chen P, Que W, Wang G and Gao B 2019 Appl. Surf. Sci. 464 700
[40] Valadez-Villalobos K, Idigoras J, Delgado L P, Meneses-Rodriguez D, Anta J A and Oskam G 2019 J. Phys. Chem. Lett. 10 877
[41] Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A and Correa-Baena J P 2018 ACS Energy Lett. 3 773
[42] Fang Z, Yang L, Jin Y, Liu K, Feng H, Deng B, Zheng L, Cui C, Tian C, Xie L, Xu X and Wei Z 2022 Chin. Phys. B 31 118801
[43] Ren X, Yang D, Yang Z, Feng J, Zhu X, Niu J, Liu Y, Zhao W and Liu S F 2017 ACS Appl. Mater. Interfaces 9 2421
[44] Shi X, Ding Y, Zhou S, Zhang B, Cai M, Yao J, Hu L, Wu J, Dai S and Nazeeruddin M K 2019 Adv. Sci. 6 1901213
[45] Yang J, Xiong S, Song J, Wu H, Zeng Y, Lu L, Shen K, Hao T, Ma Z, Liu F, Duan C, Fahlman M and Bao Q 2020 Adv. Energy Mater. 10 2000687
[46] Li C, Ma R, He X, Yang T, Zhou Z, Yang S, Liang Y, Sun X W, Wang J, Yan Y and Choy W C H 2020 Adv. Energy Mater. 10 1903013
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[11] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[12] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[15] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!