Special Issue:
SPECIAL TOPIC — Emerging photovoltaic materials and devices
|
SPECIAL TOPIC—Emerging photovoltaic materials and devices |
Prev
Next
|
|
|
TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells |
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯)† |
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract The electron transport layer (ETL) plays an important role on the performance and stability of perovskite solar cells (PSCs). Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks. Here, an ultrathin SnO2 layer of ~ 5 nm deposited by atomic layer deposit (ALD) was used to construct a TiO2/SnO2 double ETL, improving the power conversion efficiency (PCE) from 18.02% to 21.13%. The ultrathin SnO2 layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface, promoting charge extraction and transfer. The ultrathin SnO2 layer also passivates the ETL/perovskite interface, suppressing nonradiative recombination. The double ETL achieves outstanding stability compared with PSCs with TiO2 only ETL. The PSCs with double ETL retains 85% of its initial PCE after 900 hours illumination. Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.
|
Received: 12 June 2022
Revised: 20 July 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
91.60.Ed
|
(Crystal structure and defects, microstructure)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
Fund: This work is supported by the National Key R&D Program of China (Grant No. 2019YFB1503201), the National Natural Science Foundation of China (Grant Nos. 52172238, 52102304, 51902264, and 51902177), the Natural Science Foundation of Shanxi Province, China (Grant No. 2020JM-093), Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-014), Science Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20190807111605472), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019JC0005 and G2021KY05103). |
Corresponding Authors:
Zhen Li
E-mail: lizhen@nwpu.edu.cn
|
Cite this article:
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯) TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells 2022 Chin. Phys. B 31 118802
|
[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [2] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 [3] Li C, Wang Z S, Zhu H L, Zhang D, Cheng J Q, Lin H, Ouyang D and Choy W C H 2018 Adv. Energy Mater. 8 1801954 [4] Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K and Yan Y F 2018 Nat. Energy 3 1093 [5] Luo C, Zhao Y, Wang X, Gao F and Zhao Q 2021 Adv. Mater. 33 2103231 [6] Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen H T, Wen J, Wei M, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent E H and Tan H 2020 Nat. Energy 5 870 [7] Zhu L, Zhang X, Li M, Shang X, Lei K, Zhang B, Chen C, Zheng S, Song H and Chen J 2021 Adv. Energy Mater. 11 2100529 [8] Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J and Il Seok S 2021 Nature 598 444 [9] Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A and Gratzel M 2016 Nat. Energy 1 16142 [10] Li S S, Chang C H, Wang Y C, Lin C W, Wang D Y, Lin J C, Chen C C, Sheu H S, Chia H C, Wu W R, Jeng U S, Liang C T, Sankar R, Chou F C and Chen C W 2016 Energy Environ. Sci. 9 1282 [11] Liu Z, Qiu L, Juarez-Perez E J, Hawash Z, Kim T, Jiang Y, Wu Z, Raga S R, Ono L K, Liu S F and Qi Y 2018 Nat. Commun. 9 3880 [12] Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A and Han L Y 2016 Nat. Energy 1 16148 [13] Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S, Hofkens J, Yu D, Zhao Q and Sargent E H 2018 Nat. Commun. 9 1607 [14] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y and Yang Y 2018 Nat. Commun. 9 3021 [15] Liu T, Zhou Y, Li Z, Zhang L, Ju M G, Luo D, Yang Y, Yang M, Kim D H and Yang W 2018 Adv. Energy Mater. 8 1800232 [16] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M and Gruverman A 2016 Energy Environ. Sci. 9 1752 [17] Zong Y, Zhou Z, Chen M, Padture N P and Zhou Y 2018 Adv. Energy Mater. 8 1800997 [18] Long C Y, Wang N, Huang K Q, Li H Y, Liu B and Yang J L 2020 Chin. Phys. B 29 048801 [19] Abuhelaiqa M, Paek S, Lee Y, Cho K T, Heo S, Oveisi E, Huckaba A J, Kanda H, Kim H, Zhang Y, Humphry-Baker R, Kinge S, Asiri A M and Nazeeruddin M K 2019 Energy Environ. Sci. 12 1910 [20] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Gratzel M 2017 Science 358 768 [21] Chen W, Xu L, Feng X, Jie J and He Z 2017 Adv. Mater. 29 1603923 [22] Hou Y, Du X, Scheiner S, McMeekin D P, Wang Z, Li N, Killian M S, Chen H, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger N A, Hirsch A, Schmuki P, Steinruck H P, Fink R H, Halik M, Snaith H J and Brabec C J 2017 Science 358 1192 [23] Kim Y C, Yang T Y, Jeon N J, Im J, Jang S, Shin T J, Shin H W, Kim S, Lee E, Kim S, Noh J H, Seok S I and Seo J 2017 Energy Environ. Sci. 10 2109 [24] Li X, Yang J, Jiang Q, Lai H, Li S, Xin J, Chu W and Hou J 2018 ACS Nano 12 5605 [25] Tu B, Shao Y, Chen W, Wu Y, Li X, He Y, Li J, Liu F, Zhang Z, Lin Y, Lan X, Xu L, Shi X, Ng A M C, Li H, Chung L W, Djurisic A B and He Z 2019 Adv. Mater. 31 1805944 [26] Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Horantner M T, Wang J T, Li C Z, Jen A K, Lee T L and Snaith H J 2015 J. Phys. Chem. Lett. 6 2399 [27] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S and Liu S F 2018 Nat. Commun. 9 3239 [28] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 048802 [29] Hou S, Shi B, Wang P, Li Y, Zhang J, Chen P, Chen B, Hou F, Huang Q, Ding Y, Li Y, Zhang D, Xu S, Zhao Y and Zhang X 2020 Chin. Phys. B 29 078801 [30] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316 [31] Giordano F, Abate A, Correa Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin M K, Hagfeldt A and Graetzel M 2016 Nat. Commun. 7 10379 [32] Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X and Zhao X 2014 ACS Appl. Mater. Interfaces 6 15959 [33] Li C, Li Y, Xing Y, Zhang Z, Zhang X, Li Z, Shi Y, Ma T, Ma R, Wang K and Wei J 2015 ACS Appl. Mater. Interfaces 7 15117 [34] Lu H, Tian W, Gu B, Zhu Y and Li L 2017 Small 13 1701535 [35] Jiang Q, Zhang X and You J 2018 Small 14 1801154 [36] Kim J, Kim K S and Myung C W 2020 npj Comput. Mater. 6 100 [37] Li Z, Wang Z, Jia C, Wan Z, Zhi C, Li C, Zhang M, Zhang C and Li Z 2022 Nano Energy 94 106919 [38] Tavakoli M M, Yadav P, Tavakoli R and Kong J 2018 Adv. Energy Mater. 8 1800794 [39] Xie H, Yin X, Liu J, Guo Y, Chen P, Que W, Wang G and Gao B 2019 Appl. Surf. Sci. 464 700 [40] Valadez-Villalobos K, Idigoras J, Delgado L P, Meneses-Rodriguez D, Anta J A and Oskam G 2019 J. Phys. Chem. Lett. 10 877 [41] Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A and Correa-Baena J P 2018 ACS Energy Lett. 3 773 [42] Fang Z, Yang L, Jin Y, Liu K, Feng H, Deng B, Zheng L, Cui C, Tian C, Xie L, Xu X and Wei Z 2022 Chin. Phys. B 31 118801 [43] Ren X, Yang D, Yang Z, Feng J, Zhu X, Niu J, Liu Y, Zhao W and Liu S F 2017 ACS Appl. Mater. Interfaces 9 2421 [44] Shi X, Ding Y, Zhou S, Zhang B, Cai M, Yao J, Hu L, Wu J, Dai S and Nazeeruddin M K 2019 Adv. Sci. 6 1901213 [45] Yang J, Xiong S, Song J, Wu H, Zeng Y, Lu L, Shen K, Hao T, Ma Z, Liu F, Duan C, Fahlman M and Bao Q 2020 Adv. Energy Mater. 10 2000687 [46] Li C, Ma R, He X, Yang T, Zhou Z, Yang S, Liang Y, Sun X W, Wang J, Yan Y and Choy W C H 2020 Adv. Energy Mater. 10 1903013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|