CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method |
Hong-Lin Zhou(周宏霖)1,2,†, Yu-Hao Zhang(张与豪)3,†, Yang Li(李阳)1,2, Shi-Liang Li(李世亮)1,2,4, Wen-Shan Hong(洪文山)1,2,5,‡, and Hui-Qian Luo(罗会仟)1,4,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Advanced Engineering, University of Science and Technology Beijing, Beijing 100083, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract High-quality superconducting Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals have been successfully grown by the NaAs-flux method, with sodium doping level $x = 0.4$-0.64. The typical sizes of these crystals are more than 10 mm in $ab$-plane and $\sim 0.1$ mm along $c$-axis in thickness. X-ray diffraction, resistance and magnetization measurements are carried out to characterize the quality of these crystals. While no signature of magnetic phase transitions is detected in the normal state, bulk superconductivity is found for these samples, with a sharp transition at $T_{\rm c}$ ranging from 19.8 K ($x = 0.4$) to 34.8 K ($x = 0.64$). The doping dependences of the $c$-axis parameter and $T_{\rm c}$ are consistent with previous reports, suggesting a possible connection between the lattice parameters and superconductivity.
|
Received: 23 June 2022
Revised: 12 July 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the CAS (Grants Nos. XDB25000000 and XDB33000000), the K. C. Wong Education Foundation (Grant No. GJTD-2020-01), the Youth Innovation Promotion Association of CAS (Grant No. Y202001), the Postdoctoral Innovative Talent program (Grant No. BX2021018), and the China Postdoctoral Science Foundation (Grant No. 2021M700250). |
Corresponding Authors:
Wen-Shan Hong, Hui-Qian Luo
E-mail: wenshanhong@pku.edu.cn;hqluo@iphy.ac.cn
|
Cite this article:
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟) Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method 2022 Chin. Phys. B 31 117401
|
[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [2] Gu Q and Wen H H 2022 The Innovation 3 100202 [3] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P and Eremets M 2021 Nat. Rev. Phys. 3 462 [4] Chen X H, Dai P, Feng D, Xiang T and Zhang F 2014 Nat. Sci. Rev. 1 371 [5] Si Q, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017 [6] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [7] White B D, Thompson J D and Maple M B 2015 Physica C 514 246 [8] Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L and Luo J L 2010 Sci. China Phys. Mech. Astron. 53 1207 [9] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508 [10] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001 [11] Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X and Cheng J G 2022 Phys. Rev. Lett. 128 187001 [12] Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2022 Chin. Phys. Lett. 39 067401 [13] Tranquada J M, Xu G and Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148 [14] Stewart G R 2011 Rev. Mod. Phys. 83 1589 [15] Dai P 2015 Rev. Mod. Phys. 87 855 [16] Gong D and Luo H 2018 Acta Phys. Sin. 67 207407 (in Chinese) [17] Luo H Q 2017 Chin. Sci. Bull. 62 3955 [18] Gong D et al. 2022 Front. Phys. 10 886459 [19] Wen J S, Xu G Y, Gu G D, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503 [20] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410 [21] Xie T, Liu C, Fennell T, Stuhr U, Li S L and Luo H Q 2021 Chin. Phys. B 30 127402 [22] Zhang C et al. 2022 Sci. China Phys. Mech. Astron. 65 237411 [23] Hosono H and Kuroki K 2015 Physica C 514 399 [24] Quebe P, Terbüchte L J and Jeitschko W 2000 J. Alloys Compounds 302 70 [25] Zhigadlo N D, Katrych S, Bukowski Z and Karpinski J 2008 J. Phys.: Condens. Matter 20 342202 [26] Fang L, Cheng P, Jia Y, Zhu X Y, Luo H Q, Mu G, Gu C Z and Wen H H J. Cryst. Growth 311 358 [27] Jia Y, Cheng P, Fang L, Luo H Q, Yang H, Ren C, Shan L, Gu C Z and Wen H H 2008 Appl. Phys. Lett. 93 032503 [28] Luo H Q, Cheng P, Wang Z S, Yang H, Jia Y, Fang L, Ren C, Shan L and Wen H H 2009 Physica C 469 477 [29] Ni N, Bud'ko S L, Kreyssig A, Nandi S, Rustan G E, Goldman A I, Gupta S, Corbett J D, Kracher A and Canfield P C 2008 Phys. Rev. B 78 014507 [30] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512 [31] Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201 [32] Yan J Q et al. 2008 Phys. Rev. B 78 024516 [33] Luo H, Wang Z, Yang H, Cheng P, Zhu X and Wen H H 2008 Supercond. Sci. Technol. 21 125014 [34] Chen Y, Lu X, Wang M, Luo H and Li S 2011 Supercond. Sci. Technol. 24 065004 [35] Zhang R, Gong D, Lu X, Li S, Dai P and Luo H 2014 Supercond. Sci. Technol. 27 115003 [36] Chen G F, Hu W Z, Luo J L and Wang N L 2009 Phys. Rev. Lett. 102 227004 [37] Wang M et al. 2011 Phys. Rev. B 83 220515 [38] Xing X Z, Zhou W, Zhou N, Yuan F F, Pan Y Q, Zhao H J, Xu X F and Shi Z X 2016 Supercond. Sci. Technol. 29 055005 [39] Xie T, Gong D, Zhang W, Gu Y, Huesges Z, Chen D, Liu Y, Hao L, Meng S, Lu Z, Li S and Luo H 2017 Supercond. Sci. Technol. 30 095002 [40] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S and Luo H 2018 Phys. Rev. Lett. 120 137001 [41] Luo X and Chen X 2015 Sci. China Mater. 58 77 [42] Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Mater. 1 013401 [43] Xie T, Wei Y, Gong D, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S, Hu J and Luo H 2018 Phys. Rev. Lett. 120 267003 [44] Yan J Q et al. 2015 Phys. Rev. B 91 024501 [45] Iyo A, Kawashima K, Ishida S, Fujihisa H, Gotoh Y, Eisaki H and Yoshida Y 2018 J. Am. Chem. Soc. 140 369 [46] Yan J Q et al. 2009 Appl. Phys. Lett. 95 222504 [47] Yan J Q, Jensen B, Dennis K W, McCallum R W and Lograsso T A 2011 Appl. Phys. Lett. 98 072504 [48] Ma Y H, Zhang H, Gao B, Hu K K, Ji Q C, Mu G, Huang F Q and Xie X M 2015 Supercond. Sci. Technol. 28 085008 [49] Ma M W, Ruan B B, Zhou M H, Gu Y D, Yang Q S, Sun J N and Ren Z A 2022 J. Cryst. Growth 585 126562 [50] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 [51] Wang Z C, He C Y, Tang Z T, Wu S Q and Cao G H 2017 Sci. China Mater. 60 83 [52] Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S and Mu G 2020 Sci. China Phys. Mech. Astron. 63 297412 [53] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002 [54] Yi X L, Li M, Xing X Z, Meng Y, Zhao C Y and Shi Z X 2020 New J. Phys. 22 073007 [55] Liu Y, Tanatar M Z, Straszheim W E, Jensen B, Dennis K W, McCallum R W, Kogan V G, Prozorov R and Lograsso T A 2014 Phys. Rev. B 89 134504 [56] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003 [57] Krellner C, Caroca-Canales N, Jesche A, Rosner H, Ormeci A and Geibel C 2008 Phys. Rev. B 78 100504 [58] Goldman A I, Argyriou D N, Ouladdiaf B, Chatterji T, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C and McQueeney R J 2008 Phys. Rev. B 78 100506 [59] Gong D L, Liu Z Y, Gu Y H, Xie T, Ma X Y, Luo H Q, Yang Y F and Li S L 2017 Phys. Rev. B 96 104514 [60] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [61] Goko T et al. 2009 Phys. Rev. B 80 024508 [62] Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2011 Phys. Rev. B 84 184534 [63] Shinohara N, Tokiwa K, Fujihisa H, Gotoh Y, Ishida S, Kihou K, Lee C H, Eisaki H, Yoshida Y and Iyo A 2015 Supercond. Sci. Technol. 28 062001 [64] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004 [65] Li L J et al. 2009 New J. Phys. 11 025008 [66] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C and Hannahs S T 2010 Phys. Rev. B 82 024519 [67] Canfield P C, Bud'ko S L, Ni N, Yan J Q and Kracher A 2009 Phys. Rev. B 80 060501(R) [68] Ni N, Thaler A, Kracher A, Yan J Q, Bud'ko S L and Canfield P C 2009 Phys. Rev. B 80 024511 [69] Han F et al. 2009 Phys. Rev. B 80 024506 [70] Kirshenbaum K, Saha S R, Drye T and Paglione J 2010 Phys. Rev. B 82 144518 [71] Lv B, Deng L Z, Gooch M, Wei F Y, Sun Y Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl Acad. Sci. USA 108 15705 [72] Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A and Cao G H 2009 J. Phys.: Condens. Matter 21 382203 [73] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T and Matsuda 2010 Phys. Rev. B 81 184519 [74] Thaler A, Ni N, Kracher A, Yan J Q, Bud'ko S L and Canfield P C 2010 Phys. Rev. B 82 014534 [75] Shirage P M, Miyazawa K, Kito H, Eisaki H and Iyo A 2008 Appl. Phys. Exp. 1 081702 [76] Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2010 J. Phys.: Condens. Matter 22 222203 [77] Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B and Chen X H 2014 Phys. Rev. B 85 174512 [78] Pratt D K, Kim M G, Kreyssig A, Lee Y B, Tucker G S, Thaler A, Tian W, Zarestky J L, Bud'ko S L, Canfield P C, Harmon B N, Goldman A I and McQueeney R J 2011 Phys. Rev. Lett. 106 257001 [79] Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W and Dai P C 2012 Phys. Rev. Lett. 108 247002 [80] Kim M G, Lamsal J, Heitmann T W, Tucker G S, Pratt D K, Khan S N, Lee Y B, Alam A, Thaler A, Ni N, Ran S, Bud'ko S L, Marty K J, Lumsden M D, Canfield P C, Harmon B N, Johnson D D, Kreyssig A, McQueeney R J and Goldman A I 2012 Phys. Rev. Lett. 109 167003 [81] Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M and Dai P C 2013 Phys. Rev. Lett. 110 257001 [82] B?hmer A. E, Hardy F, Wang L, Wolf T, Schweiss P and Meingast C 2015 Nat. Commun. 6 7911 [83] Avci S, Chmaissem O, Allred J M, Rosenkranz S, Eremin I, Chubukov A V, Bugaris D E, Chung D Y, Kanatzidis M G, Castellan J P, Schlueter J A, Claus H, Khalyavin D D, Manuel P, Daoud Aladine A and Osborn R 2014 Nat. Commun. 5 3845 [84] Wang L, Hardy F, B?hmer A E, Wolf T, Schweiss P and Meingast C 2016 Phys. Rev. B 93 014514 [85] Allred J M et al. 2016 Nat. Phys. 12 493 [86] Wu S et al. 2021 Phys. Rev. Lett. 126 107001 [87] Taddei K M, Allred J M, Bugaris D E, Lapidus S H, Krogstad M J, Claus H, Chung D Y, Kanatzidis M G, Osborn R, Rosenkranz S and Chmaissem O 2017 Phys. Rev. B 95 064508 [88] Taddei K M, Allred J M, Bugaris D E, Lapidus S H, Krogstad M J, Stadel R, Claus H, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R and Chmaissem O 2016 Phys. Rev. B 93 134510 [89] Haberkorn N, Maiorov B, Jaime M, Usov I, Miura M, Chen G F, Yu W and Civale L 2011 Phys. Rev. B 84 064533 [90] Proke? K, Kreyssig A, Ouladdiaf B, Pratt D K, Ni N, Bud'ko S L, Canfield P C, McQueeney R J, Argyriou D N and Goldman A I 2010 Phys. Rev. B 81 180506 [91] Soh J H, Tucker G S, Pratt D K, Abernathy D L, Stone M B, Ran S, Bud'ko S L, Canfield P C, Kreyssig A, McQueeney R J and Goldman A I 2013 Phys. Rev. Lett. 111 227002 [92] Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I and Boeri L 2015 Phys. Rev. Lett. 114 047001 [93] Su Y, Setty C, Wang Z and Hu J 2012 Phys. Rev. B 85 184517 [94] Materne P, Kamusella S, Sarkar R, Goltz T, Spehling J, Maeter H, Harnagea L, Wurmehl S, Büchner B, Luetkens H, Timm C and Klauss H H et al. 2015 Phys. Rev. B 92 134511 [95] Kihou K, Saito T, Fujita K, Ishida S, Nakajima1 M, Horigane K, Fukazawa H, Kohori Y, Uchida S, Akimitsu J, Iyo1 A, Lee C and Eisaki H et al. 2016 J. Phys. Soc. Jpn. 85 034718 [96] Kihou K, Saito T, Ishida S, Nakajima M, Tomioka Y, Fukazawa H, Kohori Y, Ito T, Uchida S, Iyo A, Lee C H and Eisaki H 2010 J. Phys. Soc. Jpn. 79 124713 [97] Wang A F, Zhou S Y, Luo X G, Hong X C, Yan Y J, Ying J J, Cheng P, Ye G J, Xiang Z J, Li S Y and Chen X H 2014 Phys. Rev. B 89 064510 [98] Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q and Chen X H 2009 Europhys. Lett. 85 17006 [99] Rotter M, Panger M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Edn. 47 7949 [100] Johrendt D, Hosono H, Hoffmann R and P?ttgen R 2011 Z. Kristallogr. 226 435 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|