Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068102    DOI: 10.1088/1674-1056/24/6/068102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Silicon nanowire formed via shallow anisotropic etching Si-ash-trimming for specific DNA and electrochemical detection

Tijjani Adama, U. HAshima, Th S. Dhahib
a Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia;
b Physics Department, College of Education for Pure Science, Basra University, Basra, Iraq
Abstract  

A functionalized silicon nanowire field-effect transistor (SiNW FET) was fabricated to detect single molecules in the pM range to detect disease at the early stage with a sensitive, robust, and inexpensive method with the ability to provide specific and reliable data. The device was designed and fabricated by indented ash trimming via shallow anisotropic etching. The approach is a simple and low-cost technique that is compatible with the current commercial semiconductor standard CMOS process without an expensive deep reactive ion etcher. Specific electric changes were observed for DNA sensing when the nanowire surface was modified with a complementary captured DNA probe and target DNA through an organic linker (–OCH2CH3) using organofunctional alkoxysilanes (3-aminopropyl) triethoxysilane (APTES). With this surface modification, a single specific target molecule can be detected. The simplicity of the sensing domain makes it feasible to miniaturize it for the development of a cancer detection kit, facilitating its use in both clinical and non-clinical environments to allow non-expert interpretation. With its novel electric response and potential for mass commercial fabrication, this biosensor can be developed to become a portable/point of care biosensor for both field and diagnostic applications.

Keywords:  silicon nanowire      biosensor      specific DNA detection      anisotropic etching      Si-ash-trimming      semiconductor      pH sensor  
Received:  17 July 2014      Revised:  30 November 2014      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Gf (Nanowires)  
  07.10.Cm (Micromechanical devices and systems)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
Corresponding Authors:  Tijjani Adam, U. HAshim, Th S. Dhahi     E-mail:  tijjaniadam@yahoo.com;uda@unimap.edu.my;Sthikra@yahoo.com
About author:  81.07.-b; 81.07.Gf; 07.10.Cm; 62.23.St

Cite this article: 

Tijjani Adam, U. HAshim, Th S. Dhahi Silicon nanowire formed via shallow anisotropic etching Si-ash-trimming for specific DNA and electrochemical detection 2015 Chin. Phys. B 24 068102

[1] Adam T, Hashim U, Leow P L, et al. 2013 Adv. Mater. Res. 626 1042
[2] Guo J W, Huang H, Ren X M, Yan X, Cai S W, Guo X, Huang Y Q, Wang Q, Zhang X and Wang W 2013 Prog. Surf. Sci. 88 39
[5] Broonstrup G, Jahr N, Leiterer C, Csáki A, Fritzsche W and Christiansen S 2014 Chin. Phys. B 23 128503
[7] Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Technol. 25 063001
[8] Chen K I, Li B R and Chen Y T 2011 Nano Today 6 131
[9] Kar S 2006 Appl. Surf. Sci. 252 3961
[10] De Vico L, Iversen L, Sorensen M H, Brandbyge M, Nygard J, Martinez K L and Jensen J H 2011 Nanoscale 3 3635
[11] Chen M C, Chen H Y, Lin C Y, Chien C H, Hsieh T F, Horng J T, Qiu J T, Huang C C, Ho C H and Yang F L 2012 Sensors 12 3952
[12] Mescher M, de Smet L C P M, Sudholter E J R and Klootwijk J H 2013 J. Nanosci. Nanotechnol. 13 5649
[13] Hakim M M A, Lombardini A, Sun K, Giustiniano F, Roach P L, Davies D E, Howarth P H, de Planque M R R, Morgan H and Ashburn P 2012 Nano Lett. 12 1868
[14] Gemmell N R, et al. 2013 Opt. Express 21 5005
[15] Nair P R and Alam M A 2007 IEEE Trans. Dev. 54 3400
[16] Ramgir N S, Yang Y and Zacharias M 2010 Small 6 1705
[17] Lee S H, Lee T L, Moon K J and Myoung J M 2013 ACS Appl. Mater. Interfaces 5 11777
[18] Adam T, Hashim U, Dhahi Th S, Foo K L, Leow P L and Son P 2013 Sens. Lett. 11 333
[19] Adam T, Hashim U, Dhahi Th S, Leow P L and Chee P S 2013 Curr. Nanosci. 9 543
[20] Adam T, Hashim U, Dhahi Th S, Khor K N, Chee P S, Leow P L, Shahimin M M and Mufti M W A 2013 Wulfenia 20 45
[21] Tricoli A, Righettoni M and Teleki A 2010 Angew. Chem. Int. Ed. 49 7632
[22] Duan X X, Rajan N K, Routenberg D A, Huskens J and Reed M A 2013 ACS Nano 7 4014
[23] Yang X R, Frensley W R, Zhou D and Hu W C 2012 IEEE Trans. Nanotechnol. 11 501
[24] Gu Z L, Kaskhedikar N, Cui G L and Maier J 2013 ACS Appl. Mater. Interfaces 5 12340
[25] Sager D, Gutsche C, Prost W, Tegude F J and Bacher G 2013 J. Appl. Phys. 113 174303
[26] Wang Q J, Wang J B, Zhong X L, Tan Q H and Liu Y K 2014 Chin. Phys. B 23 123101
[27] Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[8] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[11] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[14] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[15] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
No Suggested Reading articles found!