Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094204    DOI: 10.1088/1674-1056/ac6946
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lateral characteristics improvements of DBR laser diode with tapered Bragg grating

Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉)
State Key Laboratory of High-Power Laser Diodes, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Broad area semiconductor laser (BAL) has poor lateral beam quality due to lateral mode competition, which limits its application as a high-power optical source. In this work, the distributed Bragg reflector laser diode with tapered grating (TDBR-LD) is studied. By changing the lateral width, the tapered grating increases the loss of high-order lateral modes, thus improving the lateral characteristics of the laser diode. The measuring results show that the TDBR-LD can achieve a single-lobe output under 0.9 A. In contrast to the straight distributed Bragg reflector laser diode (SDBR-LD), the lateral far field divergence of TDBR-LD is measured to be 5.23° at 1 A, representing a 17% decline. The linewidth of TDBR-LD is 0.4 nm at 0.2 A, which is reduced by nearly 43% in comparison with that of SDBR-LD. Meanwhile, both of the devices have a maximum output power value of approximate 470 mW.
Keywords:  tapered Bragg grating      lateral beam      semiconductor laser  
Received:  28 February 2022      Revised:  17 April 2022      Accepted manuscript online:  22 April 2022
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20210201030GX and 20210201089GX).
Corresponding Authors:  Li Xu, Jie Fan     E-mail:  361394566@qq.com;fanjie@cust.edu.cn

Cite this article: 

Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉) Lateral characteristics improvements of DBR laser diode with tapered Bragg grating 2022 Chin. Phys. B 31 094204

[1] Zhu N H 2017 Chin. Opt. Lett. 01 6
[2] Beck M, Hofstetter D, Aellen T, Faist J, et al. 2002 Science 295 301
[3] Wen Y, Fan Z, Shang L H, Wu C T, et al. 2021 Chin. Phys. B 30 034206
[4] Papatryfonos, Konstantinos, Saladukha, Dzianis, et al. 2017 J. Appl. Phys. 125 103101
[5] Müller A, Zink C, Ginolas A, Fricke J, et al. 2017 IEEE High Power Diode Laser and System Conference, October 11-12, 2017, Coventry, England
[6] Sujecki S, Borruel L, Wykes, J, Moreno P, Sumpf B, et al. 2003 IEEE Journal of Selected Topics in Quantum Electronics 3 823
[7] Rong J M, Xing E B, Zhang Y, et al. 2016 Opt. Express 24 7246
[8] Miah M J, Strohmaier S, Urban G and Bimberg D 2018 Appl. Phys. Lett. 113 221107
[9] Wang L J, Tong C Z, Shu S L, et al. 2019 Opt. Lett. 44 3562
[10] Zuo J X and Lin X C 2022 Laser Photon. Rev. 2100741
[11] Xie W J, Li J Z, Liao M L, Sun S, et al. 2019 Micromachines 10 529
[12] Chen H, Jia P, Chen C, et al. 2019 Opt. Commun. 445 296
[13] E S Y, Zhou Y L, Zhang X, Wang L J, et al. 2020 Appl. Opt. 59 8789
[14] Xing Z Q, Zhou Y J, Liu Y H and Wang F 2020 Chin. Phys. B 29 027302
[15] Wang Y F, Niass M, Wang F and Liu Y H 2020 Chin. Phys. B 29 017301
[16] Patchell J, Jones D, Kelly B and Gorman J O 2005 Proc. SPIE- Int. Soc. Opt. Eng. 5825 1
[17] Koester J P, Putz A, Wenzel H, Wünsche H J and Knigge A 2020 Semicond. Sci. Technol. 36 015014
[18] Crump P, Leisher P, Matson T, Anderson V, et al. 2008 Appl. Phys. Lett. 92 131113
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[5] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[6] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[7] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[8] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[9] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[10] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[11] Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers
Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨). Chin. Phys. B, 2015, 24(6): 064211.
[12] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[13] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[14] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[15] Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers
Yan Sen-Lin (颜森林). Chin. Phys. B, 2014, 23(9): 090503.
No Suggested Reading articles found!