ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High power semiconductor laser array with single-mode emission |
Peng Jia(贾鹏)1, Zhi-Jun Zhang(张志军)4, Yong-Yi Chen(陈泳屹)1,5,†, Zai-Jin Li(李再金)2,‡, Li Qin(秦莉)1, Lei Liang(梁磊)1, Yu-Xin Lei(雷宇鑫)1, Cheng Qiu(邱橙)1, Yue Song(宋悦)1, Xiao-Nan Shan(单肖楠)1, Yong-Qiang Ning(宁永强)1, Yi Qu(曲轶)2, and Li-Jun Wang(王立军)1,3 |
1 State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2 Academician Team Innovation Center of Hainan Province, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China; 3 Peng Cheng Laboratory No. 2, Xingke 1st Street, Nanshan, Shenzhen, China; 4 Liaoning Institute of Science and Technology, Anshan 114051, China; 5 Jlight Semiconductor Technology Co., Ltd., Changchun 130033, China |
|
|
Abstract The semiconductor laser array with single-mode emission is presented in this paper. The 6-μ m-wide ridge waveguides (RWGs) are fabricated to select the lateral mode. Thus the fundamental mode of laser array can be obtained by the RWGs. And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A, after that, a kink will appear. The slow axis (SA) far-field divergence angle of the unit is 13.65°. The beam quality factor M2 of the units determined by the second-order moment (SOM) method, is 1.2. This single-mode emission laser array can be used for laser processing.
|
Received: 13 September 2021
Revised: 05 November 2021
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the National Science and Technology Major Project of China (Grant Nos.2018YFB0504600 and 2017YFB0405102),the Frontier Science Key Program of the President of the Chinese Academy of Sciences (Grant No.QYZDY-SSW-JSC006),the Pilot Project of the Chinese Academy of Sciences (Grant No.XDB43030302),the National Natural Science Foundation of China (Grant Nos.62090051,62090052,62090054,11874353,61935009,61934003,61904179,61727822,61805236,62004194,and 61991433),the Science and Technology Development Project of Jilin Province,China (Grant Nos.20200401062GX,202001069GX,20200501006GX,20200501007GX,20200501008GX,and 20190302042GX),the Key Research and Development Project of Guangdong Province,China (Grant No.2020B090922003),the Equipment Pre-research,China (Grant No.2006ZYGG0304),the Special Scientific Research Project of the Academician Innovation Platform in Hainan Province,China (Grant No.YSPTZX202034),and the Dawn Talent Training Program of CIOMP,China. |
Corresponding Authors:
Yong-Yi Chen,E-mail:chenyy@ciomp.ac.cn;Zai-Jin Li,E-mail:lizaijin@126.com
E-mail: chenyy@ciomp.ac.cn;lizaijin@126.com
|
About author: 2021-11-6 |
Cite this article:
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军) High power semiconductor laser array with single-mode emission 2022 Chin. Phys. B 31 054209
|
[1] Pietrzak A, Wenzel H, Crump P, Bugge B, Fricke J, Spreemann M and Erbert G 2012 IEEE J. Quantum. Electron 48 568 [2] Guo W H, Lu Q Y, Nawrocka M, Abdullaev A, O'Callaghan J and Donegan J F 2013 Opt. Express 21 10215 [3] Ma D Z, Chen Y Y, Lei Y X, Jia P, Gao F, Zeng Y G, Liang L, Song Y, Ruan C K, Liu X, Qin L, Ning Y Q and Wang L J 2021 Chin. Phys. B 30 050505 [4] Zhou D B, Liang S, Han L S, Zhao L J and Wang W 2017 Chin. Phys. Lett. 34 034204 [5] Smistrup K, Norregaard J, Mironov A, Bro T H, Bilenberg B, Nielsen T, Eriksen J, Thilsted A H, Hansen O and Kristensen A 2014 Microelectron. Eng. 123 149 [6] Fedorov V Y and Tzortzakis S 2020 Light: Sci. Appl. 9 186 [7] Huang R K, Chann B, Missaggia L J, Augst S J, Connors M K, Turner G W, Rubio A S, Donnelly J P, Hostetler J L, Miester C and Dorsch F 2009 Proceedings of SPIE Conference on Novel in-Plane Semiconductor Lasers VIII, January 26-29, 2009, San Jose, USA, p. 72301G [8] Zhao Y, Zhang J C, Jia Z W, Liu Y H, Zhuo N, Zhai S Q, Liu F Q and Wang Z G 2016 Chin. Phys. Lett. 33 124201 [9] Lichtenstein N, Manz Y, Mauron P, Fily A, Arlt S, Thies A, Schmidt B, Muller J, Pawlik S, Sverdlov B and Harder C 2004 19th IEEE International Semiconductor Laser Conference, September 21-25, 2004, Matsue, Japan, p. 45 [10] Huang R K, Missaggia L J, Donnelly J P, Harris C T and Turner G W 2005 IEEE Photon. Tech. Lett. 17 959 [11] Donnelly J P, Huang R K, Walpole J N, Missaggia L J, Harris C T, Plant J J, Bailey R J, Mull D E, Goodhue W D and Turner G W 2003 IEEE J. Quantum. Electron 39 289 [12] Müller J, Bättig R, Beer V, Blumer C, Brunner R, Telkkälä J and Wolf J 2019 Proceedings of SPIE High-power Diode Laser Technolog XVII, February 03-05, 2019, San Francisco, USA, p. 10900 [13] Wilkens M, Wenzel H, Fricke J, Maabdorf A, Ressel P, Strohmaier S, Knigge A, Erbert G and Trankle G 2018 IEEE Photon. Tech. Lett. 30 545 [14] Strohmaier S G, Erbert G, Rataj T, Meissner-Schenk A H, Loyo-Maldonado V, Carstens C, Zimer H, Schmidt B, Kaul T, Karow M M, Wilkens M and Crump P 2018 Proceedings of SPIE High-Power Diode Laser Technology XVI, January 29-30, 2018, San Francisco, USA, p. 10514 [15] Sumpf B, Fricke J, Maiwald M, Mueller A, Ressel P, Bugge F, Erbert G and Traenkle G 2014 Semicond. Sci. Technol. 29 045025 [16] Müller A, Fricke J, Brox O, Erbert G and Sumpf B 2016 Semicond. Sci. Technol. 31 125011 [17] Chuan S L 2009 Physics of Photonic Devices-Second Edition (Chichester: John Wiley and Sons) p. 261 [18] Washington: International Standards Organization 2005 ISO 11146-1, Lasers and laser-related equipment — Test methods for laser beam widths, divergence angles and beam propagation ratios — Part 1$: Stigmatic and simple astigmatic beams |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|