Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068103    DOI: 10.1088/1674-1056/24/6/068103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser

Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices,Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ.

Keywords:  quantum dot      mode-locked laser      prism-coupled external cavity      tunability  
Received:  19 January 2015      Revised:  09 February 2015      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.79.Bh (Lenses, prisms and mirrors)  
  81.16.Dn (Self-assembly)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn
About author:  81.07.Ta; 42.60.Fc; 42.79.Bh; 81.16.Dn

Cite this article: 

Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国) Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser 2015 Chin. Phys. B 24 068103

[1] Rafailov E U, Cataluna M A and Sibbett W 2007 Nat. Photon. 1 395
[2] Lv X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[3] Lin G, Su P Y and Cheng H C 2012 Opt. Express 20 3941
[4] Cataluna M A, Rafailov E U, McRobbie A D, Sibbett W, Livshits D A and Kovshet A R 2006 IEEE Photon. Technol. Lett. 18 1500
[5] Shchekin O B, Ahn J and Deppe D G 2002 Electron. Lett. 38 712
[6] Mikhrin S S, Kovsh A R, Krestnikov I L, Kozhukhov A V, Livshits D A, Ledentsov N N, Shernyakov Y M, Novikov I I, Maximov M V, Ustinov V M and Alferov Z A 2005 Semicond. Sci. Technol. 20 340
[7] Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702
[8] Lu Z G, Liu J R, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Express 16 10835
[9] Nikitichev D, Ding Y, Ruiz M, Calligaro M, Michel N, Krakowski M, Krestnikov I, Livshits D, Cataluna M and Rafailov E 2011 Appl. Phys. B 103 609
[10] Lv X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[11] Wu J, Lv X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[12] Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
[13] Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
[14] Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quantum Electron. 36 479
[15] Biebersdorf A, Lingk C, Giorgi M D, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Böhm G, Amann M C and Abstreiter G 2003 J. Phys. D: Appl. Phys. 36 1928
[16] Allen C Ní, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Phys. E 26 372
[17] Ortner G, Allen C Ní, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
[18] A Tierno and T Ackemann 2007 Appl. Phys. B 89 585
[19] Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
[20] Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
[21] Wei H, Jin P, Luo S, Ji H M, Yang T, Li X K, Wu J, An Q, Wu Y H, Chen H M, Wang F F, Wu J and Wang Z G 2013 Chin. Phys. B 22 094211
[22] Nikitichev D I, Fedorova K A, Ding Y, Alhazime A, Able A, Kaenders W, Krestnikov I, Livshits D and Rafailov E U 2012 Appl. Phys. Lett. 101 121107
[23] Alhazime A, Ding Y, Nikitichev D I, Fedorova K A, Krestnikov I L, Krakowski M and Rafailov E U 2013 Electron. Lett. 49 5
[24] Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J, Wu J and Wang Z G 2011 Nanoscale Res. Lett. 6 625
[25] Wang Z C, Jin P, Lv X Q, Li X K and Wang Z G 2011 Electron. Lett. 47 1191
[26] Paschotta R and Keller U 2001 Appl. Phys. B 73 653
[27] Wu J, Jin P, Li X K, Wei H, Wu Y H, Wang F F, Chen H M, Wu J and Wang Z G 2013 Chin. Phys. B 22 104206
[28] Keller U 2003 Nature 424 831
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!