INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser |
Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices,Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ.
|
Received: 19 January 2015
Revised: 09 February 2015
Accepted manuscript online:
|
PACS:
|
81.07.Ta
|
(Quantum dots)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.79.Bh
|
(Lenses, prisms and mirrors)
|
|
81.16.Dn
|
(Self-assembly)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201). |
Corresponding Authors:
Jin Peng
E-mail: pengjin@semi.ac.cn
|
About author: 81.07.Ta; 42.60.Fc; 42.79.Bh; 81.16.Dn |
Cite this article:
Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国) Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser 2015 Chin. Phys. B 24 068103
|
[1] |
Rafailov E U, Cataluna M A and Sibbett W 2007 Nat. Photon. 1 395
|
[2] |
Lv X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
|
[3] |
Lin G, Su P Y and Cheng H C 2012 Opt. Express 20 3941
|
[4] |
Cataluna M A, Rafailov E U, McRobbie A D, Sibbett W, Livshits D A and Kovshet A R 2006 IEEE Photon. Technol. Lett. 18 1500
|
[5] |
Shchekin O B, Ahn J and Deppe D G 2002 Electron. Lett. 38 712
|
[6] |
Mikhrin S S, Kovsh A R, Krestnikov I L, Kozhukhov A V, Livshits D A, Ledentsov N N, Shernyakov Y M, Novikov I I, Maximov M V, Ustinov V M and Alferov Z A 2005 Semicond. Sci. Technol. 20 340
|
[7] |
Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702
|
[8] |
Lu Z G, Liu J R, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Express 16 10835
|
[9] |
Nikitichev D, Ding Y, Ruiz M, Calligaro M, Michel N, Krakowski M, Krestnikov I, Livshits D, Cataluna M and Rafailov E 2011 Appl. Phys. B 103 609
|
[10] |
Lv X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[11] |
Wu J, Lv X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[12] |
Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
|
[13] |
Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
|
[14] |
Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quantum Electron. 36 479
|
[15] |
Biebersdorf A, Lingk C, Giorgi M D, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Böhm G, Amann M C and Abstreiter G 2003 J. Phys. D: Appl. Phys. 36 1928
|
[16] |
Allen C Ní, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Phys. E 26 372
|
[17] |
Ortner G, Allen C Ní, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
|
[18] |
A Tierno and T Ackemann 2007 Appl. Phys. B 89 585
|
[19] |
Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
|
[20] |
Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
|
[21] |
Wei H, Jin P, Luo S, Ji H M, Yang T, Li X K, Wu J, An Q, Wu Y H, Chen H M, Wang F F, Wu J and Wang Z G 2013 Chin. Phys. B 22 094211
|
[22] |
Nikitichev D I, Fedorova K A, Ding Y, Alhazime A, Able A, Kaenders W, Krestnikov I, Livshits D and Rafailov E U 2012 Appl. Phys. Lett. 101 121107
|
[23] |
Alhazime A, Ding Y, Nikitichev D I, Fedorova K A, Krestnikov I L, Krakowski M and Rafailov E U 2013 Electron. Lett. 49 5
|
[24] |
Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J, Wu J and Wang Z G 2011 Nanoscale Res. Lett. 6 625
|
[25] |
Wang Z C, Jin P, Lv X Q, Li X K and Wang Z G 2011 Electron. Lett. 47 1191
|
[26] |
Paschotta R and Keller U 2001 Appl. Phys. B 73 653
|
[27] |
Wu J, Jin P, Li X K, Wei H, Wu Y H, Wang F F, Chen H M, Wu J and Wang Z G 2013 Chin. Phys. B 22 104206
|
[28] |
Keller U 2003 Nature 424 831
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|