ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback |
Dong-Zhou Zhong(钟东洲)1,†, Zhe Xu(徐喆)1, Ya-Lan Hu(胡亚兰)1, Ke-Ke Zhao(赵可可)1, Jin-Bo Zhang(张金波)1, Peng Hou(侯鹏)1, Wan-An Deng(邓万安)1, and Jiang-Tao Xi(习江涛)1,2 |
1 Intelligent Manufacturing Faculty, Wuyi University, Jiangmen 529020, China; 2 School of Electrical, Computer, Telecommunications Engineering, University of WollongGong, 2522, Australia |
|
|
Abstract We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays. Three radar probe signals are generated by driving lasers constructed by a three-element laser array with self-feedback. The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection, which are utilized as nonlinear nodes to realize the reservoirs. We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir, even when parameter mismatches exist between the response laser array and the driving laser array. Based on this, the three synchronous probe signals are utilized for ranging to three targets, respectively, using Hilbert transform. It is demonstrated that the relative errors for ranging can be very small and less than 0.6%. Our findings show that optical reservoir computing provides an effective way for applications of target ranging.
|
Received: 08 October 2021
Revised: 30 November 2021
Accepted manuscript online: 05 December 2021
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.79.Ta
|
(Optical computers, logic elements, interconnects, switches; neural networks)
|
|
42.60.Mi
|
(Dynamical laser instabilities; noisy laser behavior)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075168), GuangDong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011088), and Special Project in Key Fields of Guangdong Provincial Department of Education of China (Grant No. 2020ZDZX3052 and 2019KZDZX1025). |
Corresponding Authors:
Dong-Zhou Zhong
E-mail: dream_yu2002@126.com
|
Cite this article:
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛) Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback 2022 Chin. Phys. B 31 074205
|
[1] Myneni K, Barr T, Reed B, Pethel S and Corron N 2001 Appl. Phys. Lett. 78 1496 [2] Lin F Y and Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991 [3] Lin F Y and Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 40 815 [4] Wang B, Wang Y, Lingqin K and Wang A 2008 Chin. Opt. Lett. 6 868 [5] Wang B, Zhao T and Wang H 2012 Chin. Opt. Lett. 10 2801 [6] Zhao Y, Zhang J C, Jia Z W, Liu Y H, Zhuo N, Zhai S Q, Liu F Q and Wang Z G 2016 Chin. Phys. Lett. 33 123201 [7] Du P, Geng D, Wang W and Gong M 2015 Opt. Eng. 54 114102 [8] Wang L, Guo Y, Li P, Zhao T, Wang Y and Wang A 2017 IEEE Photon. Technol. Lett. 1 1 [9] Zhong D, Zeng N, Yang H and Xu Z 2021 Opt. Exp. 29 7809 [10] Bucolo M, Caponetto R, Fortuna L, Frasca M and Rizzo A 2003 IEEE Circuits Sys. Mag. 2 4 [11] Li G 2003 Microw. Opt. Technol. Lett. 39 446 [12] Qiao S, Chen K and Jiang T 2007 Prog. Electromagn. Res. 75 225 [13] Hara Y, Hara T, Seo T, Yanagisawa H, Ratliff P and Machowskg W 2002 Pro. IEEE Conf. 1 227 [14] Subramanian V V and Leung H 2005 IEEE Signal Process. Lett. 12 528 [15] Zhang M, Ji Y, Zhang Y, Wu Y, Xu H and Xu W 2014 IEEE Photon. J. 6 1 [16] Xu H, Wang B, Han H, Liu L, Li J, Wang Y, Wang A and Xu W 2015 Int. J. Bifurc. Chaos 25 1530029 [17] Yao T, Zhu D, Ben D and Pan S 2015 Opt. Lett. 40 1631 [18] Zhong D Z, Xu G, Luo W and Xiao Z 2017 Opt. Exp. 25 21684 [19] Zhong D Z, Xiao Z, Yang G, Zhen N and Yang H 2019 Opt. Exp. 27 9857 [20] Wu W T, Liao Y H and Lin F Y 2010 Opt. Exp. 18 26155 [21] Liu J, Wu Z M and Xia G Q 2009 Opt. Exp. 17 12619 [22] Jiang N, Pan W, Yan L, Luo B, Zhang W, Xiang S, Yang L and Zheng D 2010 Light. Technol. J. 28 1978 [23] Mengue A and Essimbi B 2012 Nonlinear Dyn. 70 1241 [24] Jaeger H and Haas H 2004 Science 304 78 [25] Pathak J, Lu Z, Hunt B, Girvan M and Ott E 2004 Science 304 78 [26] Lu Z, Hunt B and Ott E 2018 Chaos 28 061104 [27] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102 [28] Appeltant L, Soriano M, Van der Sande G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C and Fischer I 2011 Nat. Commun. 2 468 [29] Weng T, Yang H, Gu C, Zhang J and Small M 2019 Phys. Rev. E 99 042203 [30] Larger L, Soriano M, Brunner D, Appeltant L, Pesquera L, Mirasso C and Fischer I 2019 Opt. Exp. 20 3241 [31] Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M and Massar S 2012 Sci. Rep. 2 287 [32] Soriano M C, Ortin S, Brunner D, Larger L, Mirasso C R, Fischer I and Pesquera L 2013 Opt. Exp. 21 12 [33] Duport F, Schneider B, Smerieri A, Haelterman M and Massar S 2012 Opt. Exp. 20 22783 [34] Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar J L, Haelterman M and Massar S 2014 Opt. Express 22 10868 [35] Vinckier Q, Duport F, Smerieri A, Vandoorne K, Bienstman P, Haelterman M and Massar S 2015 Optica 2 438 [36] Brunner D, Soriano M, Mirasso C and Fischer I 2013 Nat. Commun. 4 1364 [37] Kuriki Y, Nakayama J, Takano K and Uchida A 2018 Opt. Exp. 26 5777 [38] Nguimdo R and Erneux T 2019 Opt. Lett. 44 49 [39] Jaeger H 2001 Ger. Natl. Res. Inst. for Comput. Sci. 1 148 [40] Lukosevecius M, Jaeger H and Schrauwen B 2012 KI-Künstliche Intelligenz 26 365 [41] Hou Y, Xia G Q, Yang W, Wang D, Jayaprasath E, Jiang Z, H Chunxia and Wu Z 2018 Opt. Exp. 26 10211 [42] Zhong D, Yang H, Xi J, Zeng N, Xu Z and Fuqin D 2021 Opt. Exp. 29 5279 [43] Amil P, Soriano M and Masoller C 2019 Chaos 29 113111 [44] Bao X, Zhao Q, Yin H and Qin J 2018 Mod. Phys. Lett. B 32 1850150 [45] Triefenbach F, Jalalvand A, Schrauwen B and Martens J P 2010 Adv. Neural Inf. Process. Syst. 1 2307 [46] Boccato L, Lopes A, Attux R and Von Zuben F 2011 Proc. Int. Jt. Conf. on Neural Networks pp. 580-587 [47] Antonik P, Gulina M, Pauwels J and Massar S 2018 Phys. Rev. E 98 012215 [48] Zhong D, Yang H, Xi J, Zeng N and Xu Z 2020 Opt. Exp. 28 25778 [49] Hou Y, Yi L, Xia G and Wu Z 2017 IEEE Photon. J. 9 1 [50] Nakayama J, Kanno K and Uchida A 2016 Opt. Exp. 24 8679 [51] Li N, Susanto H, Cemlyn B, Henning I and Adams M 2018 Sci. Rep. 8 109 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|