Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 028102    DOI: 10.1088/1674-1056/21/2/028102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm

Li Xin-Kun,Liang De-Chun,Jin Peng,An Qi,Wei Heng,Wu Jian,Wang Zhan-Guo
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  According to the InAs/GaAs submonolayer quantum dot active region, we demonstrate a bent-waveguide superluminescent diode emitting at a wavelength of around 970 nm. At a pulsed injection current of 0.5 A, the device exhibits an output power of 24 mW and an emission spectrum centred at 971 nm with a full width at half maximum of 16 nm.
Keywords:  quantum dot      submonolayer      self-assembled      superluminescent diode  
Received:  19 September 2011      Revised:  19 October 2011      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60876086, 60976057, and 60776037).
Corresponding Authors:  Jin Peng,pengjin@semi.ac.cn     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Li Xin-Kun,Liang De-Chun,Jin Peng,An Qi,Wei Heng,Wu Jian,Wang Zhan-Guo InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm 2012 Chin. Phys. B 21 028102

[1] Schmitt J M 1999 IEEE J. Sel. Topics Quantum Electron. 5 1205
[2] Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb R A and Hitzenberger C K 2011 Opt. Express 19 1217
[3] Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese)
[4] Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)
[5] Lee B 2003 Opt. Fiber Technol. 9 57
[6] Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[7] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[8] Wu J, L? X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[9] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[10] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
[11] Yoo Y C, Han I K and Lee J I 2007 Electron. Lett. 43 1045
[12] Zhang Z Y, Luxmoore I J, Jin C Y, Liu H Y, Jiang Q, Groom K M, Childs D T, Hopkinson M, Cullis A G and Hogg R A 2007 Appl. Phys. Lett. 91 081112
[13] Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
[14] Haffouz S, Rodermans M, Barrios P J, Lapointe J, Raymond S, Lu Z and Poitras D 2010 Electron. Lett. 46 1144
[15] Zhang Z Y, Hogg R A, L? X Q and Wang Z G 2010 Adv. Opt. Photon. 2 201
[16] Brezinski M E and Fujimoto J G 1999 IEEE J. Sel. Top. Quantum Electron. 5 1185
[17] Hinzer K, Lapointe J, Feng Y, Del^age A, Fafard S, SpringThorpe A J and Griswold E M 2000 J. Appl. Phys. 87 1496
[18] Schlereth T W, Schnerder C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
[19] Kovsh A R, Zhukov A E, Maleev N A, Mikhrin S S, Livshits D A, Shernyakov Y M, Maximov M V, Pihtin N A, Tarasov I S, Ustinov V M, Alferov Zh I, Wang J S, Wei L, Lin G, Chi J Y, Ledentsov N N and Bimberg D 2003 Microelectron. J. 34 491
[20] Zhukov A E, Kovsh A R, Mikhrin S S, Maleev N A, Ustinov V M, Livshits D A, Tarasov I S, Bedarev D A, Maximov M V, Tsatsul'nikov A F, Soshnikov I P, Kop関 P S, Alferov Zh I, Ledetsov N N and Bimberg D 1999 Electron. Lett. 35 1845
[21] Xu Z C, Birkedal D, Juhl M and Hvam J M 2004 Appl. Phys. Lett. 85 3259
[22] Hopfer F, Mutig A, Kuntz M, Fiol G, Bimberg D, Ledentsov N N, Shchukin V A, Mikhrin S S, Livshits D L, Krestnikov I L, Kovsh A R, Zakharov N D and Werner P 2006 Appl. Phys. Lett. 89 141106
[23] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[24] Schäfer F, Reithmaier J P and Forchel A 1999 Appl. Phys. Lett. 74 2915
[25] Klopf F, Reithmaier J P and Forchel A 2001 J. Cryst. Growth 227-228 1151
[26] Xu Z C, Birkedal D, Hvam J M, Zhao Z Y, Liu Y M, Yang K T, Kanjilal A and Sadowski J 2003 Appl. Phys. Lett. 82 3859
[27] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electron. Lett. 41 41
[28] Ray S K, Choi T L, Groom K M, Stevens B J, Liu H Y, Hopkinson M and Hogg R A 2007 IEEE J. Sel. Top. Quantum Electron. 13 1267
[29] Wu B R, Lin C F, Laih L W and Shih T T 2000 Electron. Lett. 36 2093
[1] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[2] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[3] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[4] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[5] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[6] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[7] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[8] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[9] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[10] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[13] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[14] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[15] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
No Suggested Reading articles found!