INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm |
Li Xin-Kun(李新坤), Liang De-Chun(梁德春), Jin Peng(金鹏)†, An Qi(安琪), Wei Heng(魏恒), Wu Jian(吴剑), and Wang Zhan-Guo(王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract According to the InAs/GaAs submonolayer quantum dot active region, we demonstrate a bent-waveguide superluminescent diode emitting at a wavelength of around 970 nm. At a pulsed injection current of 0.5 A, the device exhibits an output power of 24 mW and an emission spectrum centred at 971 nm with a full width at half maximum of 16 nm.
|
Received: 19 September 2011
Revised: 19 October 2011
Accepted manuscript online:
|
PACS:
|
81.07.Ta
|
(Quantum dots)
|
|
81.16.Dn
|
(Self-assembly)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60876086, 60976057, and 60776037). |
Corresponding Authors:
Jin Peng,pengjin@semi.ac.cn
E-mail: pengjin@semi.ac.cn
|
Cite this article:
Li Xin-Kun(李新坤), Liang De-Chun(梁德春), Jin Peng(金鹏), An Qi(安琪), Wei Heng(魏恒), Wu Jian(吴剑), and Wang Zhan-Guo(王占国) InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm 2012 Chin. Phys. B 21 028102
|
[1] |
Schmitt J M 1999 IEEE J. Sel. Topics Quantum Electron. 5 1205
|
[2] |
Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb R A and Hitzenberger C K 2011 Opt. Express 19 1217
|
[3] |
Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese)
|
[4] |
Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)
|
[5] |
Lee B 2003 Opt. Fiber Technol. 9 57
|
[6] |
Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
|
[7] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[8] |
Wu J, L? X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[9] |
Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
|
[10] |
Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
|
[11] |
Yoo Y C, Han I K and Lee J I 2007 Electron. Lett. 43 1045
|
[12] |
Zhang Z Y, Luxmoore I J, Jin C Y, Liu H Y, Jiang Q, Groom K M, Childs D T, Hopkinson M, Cullis A G and Hogg R A 2007 Appl. Phys. Lett. 91 081112
|
[13] |
Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
|
[14] |
Haffouz S, Rodermans M, Barrios P J, Lapointe J, Raymond S, Lu Z and Poitras D 2010 Electron. Lett. 46 1144
|
[15] |
Zhang Z Y, Hogg R A, L? X Q and Wang Z G 2010 Adv. Opt. Photon. 2 201
|
[16] |
Brezinski M E and Fujimoto J G 1999 IEEE J. Sel. Top. Quantum Electron. 5 1185
|
[17] |
Hinzer K, Lapointe J, Feng Y, Del^age A, Fafard S, SpringThorpe A J and Griswold E M 2000 J. Appl. Phys. 87 1496
|
[18] |
Schlereth T W, Schnerder C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
|
[19] |
Kovsh A R, Zhukov A E, Maleev N A, Mikhrin S S, Livshits D A, Shernyakov Y M, Maximov M V, Pihtin N A, Tarasov I S, Ustinov V M, Alferov Zh I, Wang J S, Wei L, Lin G, Chi J Y, Ledentsov N N and Bimberg D 2003 Microelectron. J. 34 491
|
[20] |
Zhukov A E, Kovsh A R, Mikhrin S S, Maleev N A, Ustinov V M, Livshits D A, Tarasov I S, Bedarev D A, Maximov M V, Tsatsul'nikov A F, Soshnikov I P, Kop関 P S, Alferov Zh I, Ledetsov N N and Bimberg D 1999 Electron. Lett. 35 1845
|
[21] |
Xu Z C, Birkedal D, Juhl M and Hvam J M 2004 Appl. Phys. Lett. 85 3259
|
[22] |
Hopfer F, Mutig A, Kuntz M, Fiol G, Bimberg D, Ledentsov N N, Shchukin V A, Mikhrin S S, Livshits D L, Krestnikov I L, Kovsh A R, Zakharov N D and Werner P 2006 Appl. Phys. Lett. 89 141106
|
[23] |
Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
|
[24] |
Schäfer F, Reithmaier J P and Forchel A 1999 Appl. Phys. Lett. 74 2915
|
[25] |
Klopf F, Reithmaier J P and Forchel A 2001 J. Cryst. Growth 227-228 1151
|
[26] |
Xu Z C, Birkedal D, Hvam J M, Zhao Z Y, Liu Y M, Yang K T, Kanjilal A and Sadowski J 2003 Appl. Phys. Lett. 82 3859
|
[27] |
Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electron. Lett. 41 41
|
[28] |
Ray S K, Choi T L, Groom K M, Stevens B J, Liu H Y, Hopkinson M and Hogg R A 2007 IEEE J. Sel. Top. Quantum Electron. 13 1267
|
[29] |
Wu B R, Lin C F, Laih L W and Shih T T 2000 Electron. Lett. 36 2093
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|