Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080301    DOI: 10.1088/1674-1056/ac70c3
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Exploring Majorana zero modes in iron-based superconductors

Geng Li(李更)1,2,3, Shiyu Zhu(朱诗雨)1,2, Peng Fan(范朋)1,2, Lu Cao(曹路)1,2, and Hong-Jun Gao(高鸿钧)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Majorana zero modes (MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are considered promising to realize topological quantum computing. Discovery of MZM in the vortices of the iron-based superconductors (IBSs) has recently fueled the Majorana research in a way which not only removes the material barrier requiring construction of complicated hybrid artificial structures, but also enables observation of pure MZMs under higher temperatures. So far, MZMs have been observed in iron-based superconductors including FeTe0.55Se0.45, (Li0.84Fe0.16)OHFeSe, CaKFe4As4, and LiFeAs. In this topical review, we present an overview of the recent STM studies on the MZMs in IBSs. We start with the observation of MZMs in the vortices in FeTe0.55Se0.45 and discuss the pros and cons of FeTe0.55Se0.45 compared with other platforms. We then review the following up discovery of MZMs in vortices of CaKFe4As4, impurity-assisted vortices of LiFeAs, and quantum anomalous vortices in FeTe0.55Se0.45, illustrating the pathway of the developments of MZM research in IBSs. Finally, we give perspective on future experimental works in this field.
Keywords:  Majorana zero mode      iron-based superconductors      topological surface states      scanning tunneling microscopy  
Received:  07 April 2022      Revised:  17 May 2022      Accepted manuscript online:  18 May 2022
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  74.25.-q (Properties of superconductors)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: The work is supported by the Ministry of Science and Technology of China (Grant No. 2019YFA0308500) and the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YSBR-003).
Corresponding Authors:  Hong-Jun Gao     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧) Exploring Majorana zero modes in iron-based superconductors 2022 Chin. Phys. B 31 080301

[1] Majorana E 1937 Nuovo Ciment 14 171
[2] Alicea J 2012 Rep. Prog. Phys. 75 076501
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Wilczek F 2009 Nat. Phys. 5 614
[5] Kitaev A Y 2003 Ann. Phys-new. York. 303 2
[6] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[7] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[8] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K and Alicea J 2016 Phys. Rev. X 6 031016
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Read N and Green D 2000 Phys. Rev. B 61 10267
[11] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[12] Kitaev A Y 2001 Phys. Uspekhi 44 131
[13] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[14] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[15] Braunecker B and Simon P 2013 Phys. Rev. Lett. 111 147202
[16] Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111 186805
[17] Nadj-Perge S, Drozdov I K, Bernevig B A and Yazdani A 2013 Phys. Rev. B 88 020407
[18] Vazifeh M M and Franz M 2013 Phys. Rev. Lett. 111 206802
[19] Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A and Bernevig B A 2016 Nat. Commun. 7 12297
[20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[21] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[22] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[23] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P and Marcus C M 2016 Science 354 1557
[24] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[25] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[26] Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich B W and Franke K J 2015 Phys. Rev. Lett. 115 197204
[27] Ruby M, Heinrich B W, Peng Y, von Oppen F and Franke K J 2017 Nano Lett. 17 4473
[28] Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotas K, Szunyogh L, Thorwart M and Wiesendanger R 2018 Sci. Adv. 4 eaar5251
[29] Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R and Wiebe J 2021 Nat. Phys. 17 943
[30] Schneider L, Beck P, Neuhaus-Steinmetz J, Rozsa L, Posske T, Wiebe J and Wiesendanger R 2022 Nat. Nanotechnol. 17 384
[31] Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K and Wiesendanger R 2019 Sci. Adv. 5 eaav6600
[32] Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T and Liljeroth P 2020 Nature 588 424
[33] Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S and Liljeroth P 2021 Adv. Mater. 33 2006850
[34] Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N and Beidenkopf H 2021 Nat. Phys. 17 1413
[35] Kezilebieke S, Vano V, Huda M N, Aapro M, Ganguli S C, Liljeroth P and Lado J L 2022 Nano Lett. 22 328
[36] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[37] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[38] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182
[39] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[40] Li G, Zhu S Y, Wang D F, Wang Y L and Gao H J 2021 Supercond. Sci. Tech. 34 073001
[41] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35
[42] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[43] Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J and Ding H 2020 Nat. Commun. 11 5688
[44] Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J and Ding H 2021 Nat. Commun. 12 4146
[45] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H and Gao H J 2020 Science 367 189
[46] Wang Z Y, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104
[47] Chen C, Jiang K, Zhang Y, Liu C F, Liu Y, Wang Z Q and Wang J 2020 Nat. Phys. 16 536
[48] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[49] Caroli C, De Gennes P G and Matricon J 1964 Phys. Lett. 9 307
[50] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711
[51] Zhang P, Richard P, Xu N, Xu Y M, Ma J, Qian T, Fedorov A V, Denlinger J D, Gu G D and Ding H 2014 Appl. Phys. Lett. 105 172601
[52] Zhang P, Wang Z J, Wu X X, Yaji K, Ishida Y, Kohama Y, Dai G Y, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X C, Jin C Q, Hu J P, Thomale R, Sumida K, Wu S L, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M and Shin S 2019 Nat. Phys. 15 41
[53] Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X and Fang Z 2015 Phys. Rev. B 92 115119
[54] Xu G, Lian B, Tang P Z, Qi X L and Zhang S C 2016 Phys. Rev. Lett. 117 047001
[55] Chiu C K, Machida T, Huang Y Y, Hanaguri T and Zhang F C 2020 Sci. Adv. 6 eaay0443
[56] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181
[57] Liu C X, Sau J D, Stanescu T D and Das Sarma S 2017 Phys. Rev. B 96 075161
[58] Moore C, Stanescu T D and Tewari S 2018 Phys. Rev. B 97 165302
[59] Moore C, Zeng C C, Stanescu T D and Tewari S 2018 Phys. Rev. B 98 155314
[60] Flensberg K 2010 Phys. Rev. B 82 180516
[61] Setiawan F, Liu C X, Sau J D and Das Sarma S 2017 Phys. Rev. B 96 184520
[62] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[63] Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New J. Phys. 13 053016
[64] Sau J 2020 Science 367 145
[65] Sau J, Simon S, Vishveshwara S and Williams J R 2020 Nature Reviews Physics 2 667
[66] He X, Li G, Zhang J, Karki A B, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D and Plummer E W 2011 Phys. Rev. B 83 220502
[67] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
[68] Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Materials 1 013401
[69] Gao M A, Ma F J, Lu Z Y and Xiang T 2010 Phys. Rev. B 81 193409
[70] Wang X C, Zhang S J, Liu Q Q, Deng Z, Lv Y X, Zhu J L, Feng S M and Jin C Q 2011 High Pressure Res. 31 7
[71] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[72] Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y and Takagi H 2012 Phys. Rev. B 85 214505
[73] Chi S, Grothe S, Liang R X, Dosanjh P, Hardy W N, Burke S A, Bonn D A and Pennec Y 2012 Phys. Rev. Lett. 109 087002
[74] Allan M P, Rost A W, Mackenzie A P, Xie Y, Davis J C, Kihou K, Lee C H, Iyo A, Eisaki H and Chuang T M 2012 Science 336 563
[75] Yin J X, Zhang S S, Dai G Y, Zhao Y Y, Kreisel A, Macam G, Wu X X, Miao H, Huang Z Q, Martiny J H J, Andersen B M, Shumiya N, Multer D, Litskevich M, Cheng Z J, Yang X, Cochran T A, Chang G Q, Belopolski I, Xing L Y, Wang X C, Gao Y, Chuang F C, Lin H, Wang Z Q, Jin C Q, Bang Y and Hasan M Z 2019 Phys. Rev. Lett. 123 217004
[76] Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R X, Bonn D and Wahl P 2018 Nat. Commun. 9 2602
[77] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506
[78] Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T and Wang S C 2012 Phys. Rev. Lett. 108 037002
[79] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[80] Konig E J and Coleman P 2019 Phys. Rev. Lett. 122 207001
[81] Qin S S, Hu L H, Le C C, Zeng J F, Zhang F C, Fang C and Hu J P 2019 Phys. Rev. Lett. 123 027003
[82] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
[83] Jiang K, Dai X and Wang Z Q 2019 Phys. Rev. X 9 011033
[84] Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H and Gao H J 2021 Nat. Commun. 12 1348
[85] Wang D, Wiebe J, Zhong R, Gu G and Wiesendanger R 2021 Phys. Rev. Lett. 126 076802
[86] Cao L, Liu W Y, Li G, Dai G Y, Zheng Q, Wang Y X, Jiang K, Zhu S Y, Huang L, Kong L Y, Yang F Z, Wang X C, Zhou W, Lin X, Hu J P, Jin C Q, Ding H and Gao H J 2021 Nat. Commun. 12 6312
[87] Edelberg D, Kumar H, Shenoy V, Ochoa H and Pasupathy A N 2020 Nat. Phys. 16 1097
[88] Mao J H, Milovanovic S P, Andelkovic M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y H and Andrei E Y 2020 Nature 584 215
[89] Miao H, Wang L M, Richard P, Wu S F, Ma J, Qian T, Xing L Y, Wang X C, Jin C Q, Chou C P, Wang Z, Ku W and Ding H 2014 Phys. Rev. B 89 220503
[90] Sau J D, Clarke D J and Tewari S 2011 Phys. Rev. B 84 094505
[91] van Heck B, Akhmerov A R, Hassler F, Burrello M and Beenakker C W J 2012 New J. Phys. 14 035019
[92] Vijay S and Fu L 2016 Phys. Rev. B 94 235446
[93] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[4] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[8] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[9] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[10] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[11] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[12] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[13] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[14] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[15] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
No Suggested Reading articles found!