Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086105    DOI: 10.1088/1674-1056/ac078a
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management

Ran Huang(黄冉)1,2, Jiaming Zhang(张家明)1,2, Fangfang Xu(徐芳芳)1,2, Jie Liu(刘杰)1,2, Huijun Yao(姚会军)1,2,3,4, Yonghui Chen(陈永辉)1,2,3,4, and Jinglai Duan(段敬来)1,2,3,4,†
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China;
4 Huizhou Research Center of Ion Sciences, Huizhou 516000, China
Abstract  Integrating nanowires with nonuniform diameter and random spatial distribution into an array can afford unconventional and additional means for modulating optical response. However, experimental realization of such a nanowire array is quite challenging. In this work, we propose a new fabrication strategy which takes advantage of ion track technology, via sequential swift heavy ion irradiation and ion track etching. Based on this strategy, we unprecedentedly realize nanowire arrays, using gold as an example, with gradient and programmable diameters in a controlled manner. We further demonstrate that such nanowire arrays can support broadband, tunable, and enhanced plasmonic responses. We believe that our new type of nanowire arrays will find great potential in applications such as light management and optoelectronic devices.
Keywords:  ion track technology      nanowire      plasmonics      light management  
Received:  01 March 2021      Revised:  23 March 2021      Accepted manuscript online:  03 June 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  62.23.Hj (Nanowires)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  87.80.Cc (Optical trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1932210, 12005270, and 11975114).
Corresponding Authors:  Jinglai Duan     E-mail:  j.duan@impcas.ac.cn

Cite this article: 

Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来) Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management 2021 Chin. Phys. B 30 086105

[1] Leung S F, Zhang Q, Xiu F, Yu D, Ho J C, Li D and Fan Z 2014 J. Phys. Chem. Lett. 5 1479
[2] Wang W and Qi L 2019 Adv. Funct. Mater. 29 1807275
[3] Villa K, Novotný F, Zelenka J, Browne M P, Ruml T and Pumera M 2019 ACS Nano 13 8135
[4] Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J and Tang J 2017 Adv. Mater. 29 1701451
[5] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[6] Han J, Yang D, Ma D, Qiao W and Wang Z Y 2018 Adv. Opt. Mater. 6 1800038
[7] Zhong Z, Li X, Wu J, Li C, Xie R B, Yuan X, Niu X, Wang W, Luo X, Zhang G, Wang Z M, Tan H H and Jagadish C 2019 Appl. Phys. Lett. 115 053101
[8] Garin M, Heinonen J, Werner L, Pasanen T P, Vahanissi V, Haarahiltunen A, Juntunen M A and Savin H 2020 Phys. Rev. Lett. 125 117702
[9] Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 078502
[10] Guo D, Li W, Wang D, Meng B, Fang D and Wei Z 2020 Chin. Phys. B 29 098504
[11] Li W, An Y, Wienk M M and Janssen R A J 2015 J. Mater. Chem. A 3 6756
[12] Negash A, Genene Z, Thiruvallur Eachambadi R, Kesters J, Van den Brande N, D'Haen J, Penxten H, Abdulahi B A, Wang E, Vandewal K, Maes W, Mammo W, Manca J and Admassie S 2019 J. Mater. Chem. C 7 3375
[13] Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia de Abajo J, Pruneri V and Altug H 2015 Science 349 165
[14] Fu X, Ren F F, Sun S, Tian Y, Wu Y, Lou P and Du Q G 2019 Phys. Scripta 94 055504
[15] Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C and Miotello A 2015 Appl. Catal. B Environ. 168 333
[16] Momeni M M, Ghayeb Y and Gheibee S 2017 Ceram. Int. 43 564
[17] Feng K, Wang S, Zhang D, Wang L, Yu Y, Feng K, Li Z, Zhu Z, Li C, Cai M, Wu Z, Kong N, Yan B, Zhong J, Zhang X, Ozin G A and He L 2020 Adv. Mater. 32 2000014
[18] Zheng J, Wang J, Xiong Z, Wan Z, Zhan X, Yang S, Chen J, Dai J and Tang J 2019 Adv. Funct. Mater. 29 1901768
[19] Liu C, Zhang H, Sun Z, Ding K, Mao J, Shao Z and Jie J 2016 J. Mater. Chem. C 4 5648
[20] Shang Q, Li C, Zhang S, Liang Y, Liu Z, Liu X and Zhang Q 2020 Nano Lett. 20 1023
[21] Yu P, Wu J, Liu S, Xiong J, Jagadish C and Wang Z M 2016 Nano Today 11 704
[22] Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L 2009 Nat. Mater. 8 643
[23] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S and Brongersma M L 2010 Nano Lett. 10 439
[24] Zheng J, Dai B, Wang J, Xiong Z, Yang Y, Liu J, Zhan X, Wan Z and Tang J 2017 Nat. Commun. 8 1438
[25] Bao H and Ruan X 2010 Opt. Lett. 35 3378
[26] Sturmberg B C P, Dossou K B, Botten L C, Asatryan A A, Poulton C G, McPhedran R C and Martijn de Sterke C 2012 Appl. Phys. Lett. 101 173902
[27] Hong L, Rusli, Wang X, Zheng H, Wang H and Yu H 2014 J. Appl. Phys. 116 194302
[28] Lin C and Povinelli M 2011 Opt. Express 19 A1148
[29] Fink D 2004 Transport Processes in Ion-Irradiated Polymers, 1st edn. (New York: Springer-Verlag) pp. 171-200
[30] Fleischer R L, Price P B and Walker R M 1975 Nuclear Tracks in Solids: Principles and Applications, 1st edn. (California: Berkeley) p. 20
[31] Duan J L, Liu J, Yao H J, Mo D, Hou M D, Sun Y M, Chen Y F and Zhang L 2008 Mater. Sci. Eng. B 147 57
[32] Liu J, Duan J L, Toimil-Molares M E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G and Neumann R 2006 Nanotechnology 17 1922
[33] Toimil-Molares M E 2012 Beilstein J. Nanotechnol. 3 860
[34] Giannini V, Fernandez-Dominguez A I, Heck S C and Maier S A 2011 Chem. Rev. 111 3888
[35] Wen L, Xu R, Mi Y and Lei Y 2017 Nat. Nanotechnol. 12 244
[36] Fountaine K T, Kendall C G and Atwater H A 2014 Opt. Express 22 A930
[37] Du Q G, Kam C H, Demir H V, Yu H Y and Sun X W 2011 Opt. Lett. 36 1884
[1] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[2] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[3] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[4] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[5] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[6] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[7] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[8] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[9] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[10] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[11] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[12] Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer
Li Zhang(张力), Wei-Ning Liu(刘卫宁), Yan-Zhou Wang(王艳周), Qi-Ming Liu(刘奇明), Jun-Shuai Li(栗军帅), Ya-Li Li(李亚丽), and De-Yan He(贺德衍). Chin. Phys. B, 2021, 30(10): 104207.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[1] Jia Yu, Ma Bing-xian, Shen San-guo, Yang Shi-e. CALCULATION OF ELECTRONIC STATES OF Si(337) SURFACE[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(1): 46 -51 .
[2] Ding Xiu-xiang, Liang Jiu-qing. LARMOR PRECESSION AND THE BARRIER INTERACTION TIME[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 409 -415 .
[3] Xue Qi-zhen, S. Kuwano, K. Nakayama, T. Sakurai, Xue Qi-kun. GROWTH MODE AND SURFACE RECONSTRUCTION OF GaN(0001) THIN FILMS ON 6H-SiC(0001)[J]. Chin. Phys., 2001, 10(13): 157 -162 .
[4] Zhou Wang-min, Fan Tian-you. PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM[J]. Chin. Phys., 2001, 10(8): 743 -747 .
[5] Wu Xiang-Yao, Yin Xin-Guo, Guo Yi-Qing. Non-factorizable contributions in D0→π+π- decay[J]. Chin. Phys., 2004, 13(4): 469 -472 .
[6] Wu Hui-Bin. Potential method of integration for solving the equations of mechanical systems[J]. Chin. Phys., 2006, 15(5): 899 -902 .
[7] Luo Zheng-Ming, Deng Bai-Quan, Peng Li-Lin, Yan Jian-Cheng, Chen Zhi. Damaging impacts of energetic charge particles on materials in plasma energy explosive events[J]. Chin. Phys., 2006, 15(7): 1486 -1491 .
[8] Liu Xiao-Juan, Zhou Bing-Ju, Liu Ming-Wei, Li Shou-Cun. Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process[J]. Chin. Phys., 2007, 16(12): 3685 -3691 .
[9] Zhang Sheng-Hai, Qian Xing-Zhong, Liu Yu-Jin. Chaos synchronization in injection-locked semiconductor lasers with optical feedback[J]. Chin. Phys., 2007, 16(2): 463 -467 .
[10] Jiang Chang-Sheng, Liu Yang-Zheng, Lin Chang-Sheng, Jiang Yao-Mei. Chaos synchronization between two different 4D hyperchaotic Chen systems[J]. Chin. Phys., 2007, 16(3): 660 -665 .