Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078102    DOI: 10.1088/1674-1056/abf920
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy

Yu-Bin Kang(亢玉彬)1, Feng-Yuan Lin(林逢源)1,†, Ke-Xue Li(李科学)1, Ji-Long Tang(唐吉龙)1,‡, Xiao-Bing Hou(侯效兵)1, Deng-Kui Wang(王登魁)1, Xuan Fang(方铉)1, Dan Fang(房丹)1, Xin-Wei Wang(王新伟)2, and Zhi-Peng Wei(魏志鹏)1
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China;
2 School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
Abstract  The self-catalyzed growth of GaAs nanowires (NWs) on silicon (Si) is an effective way to achieve integration between group Ⅲ-V elements and Si. High-crystallinity uniform GaAs NW arrays were grown by solid-source molecular beam epitaxy (MBE). In this paper, we describe systematic experiments which indicate that the substrate treatment is crucial to the highly crystalline and uniform growth of one-dimensional nanomaterials. The influence of natural oxidation time on the crystallinity and uniformity of GaAs NW arrays was investigated and is discussed in detail. The GaAs NW crystallinity and uniformity are maximized after 20 days of natural oxidation time. This work provides a new solution for producing high-crystallinity uniform Ⅲ-V nanowire arrays on wafer-scale Si substrates. The highly crystalline uniform NW arrays are expected to be useful for NW-based optical interconnects and Si platform optoelectronic devices.
Keywords:  GaAs      nanowire arrays      self-catalyzed      molecular beam epitaxy  
Received:  03 March 2021      Revised:  30 March 2021      Accepted manuscript online:  19 April 2021
PACS:  61.46.-w (Structure of nanoscale materials)  
  07.79.Pk (Magnetic force microscopes)  
  81.10.Bk (Growth from vapor)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, and 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology (Grant No. XQNJJ-2018-18).
Corresponding Authors:  Feng-Yuan Lin, Ji-Long Tang     E-mail:  linfengyuan_0116@163.com;jl_tangcust@163.com

Cite this article: 

Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏) Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy 2021 Chin. Phys. B 30 078102

[1] Tomioka K, Yoshimura M and Fukui T 2012 Nature 488 189
[2] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
[3] Li H L, Chen Y T, Wei Z P and Chen R 2020 Sci. China Mater. 63 1364
[4] Zhu X T, Lin F Y, Zhang Z H, Chen X, Huang H, Wang D K, Tang J L, Fang X, Fang D, Ho J C, Liao L and Wei Z P 2020 Nano Lett. 20 2654
[5] Dimakis E, Jahn U, Ramsteiner M, Tahraoui A, Grandal J, Kong X, Marquardt O, Trampert A, Riechert H and Geelhaar L 2014 Nano Lett. 14 2604
[6] Holm J V, Jorgensen H I, Krogstrup P, Nygard J, Liu H Y and Aagesen M 2013 Nat. Commun. 4 1498
[7] Thelander C, Nilsson H A, Jensen L E and Samuelson L 2005 Nano Lett. 5 635
[8] Wang Y, Zhang Y, Zhang D, He S and Li X 2015 Nanoscale Res. Lett. 10 269
[9] Liang D, Kang Y S, Huo Y J, Chen Y S, Cui Y and Harris J S 2013 Nano Lett. 13 4850
[10] Chen G, Liang B, Liu Z, Yu G, Xie X M, Luo T, Xie Z, Chen D, Zhu M Q and Shen G Z 2014 J. Mater. Chem. C 2 1270
[11] Tomioka K, Motohisa J, Hara S, Hiruma K and Fukui T 2010 Nano Lett. 10 1639
[12] Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E and Patolsky F 2010 Angew. Chem. Int. Ed. 49 6830
[13] Rostgaard K R, Frederiksen R S, Liu Y C, Berthing T, Madsen M H, Holm J, Nygard J and Martinez K L 2013 Nanoscale 5 10226
[14] Hu L and Chen G 2007 Nano Lett. 7 3249
[15] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
[16] Zhang T, Wu S, Zheng R and Cheng G 2015 Nano Energy 13 433
[17] Yu X Z, Li L X, Wang H L, Xiao J X, Shen C, Pan D and Zhao J H 2016 Nanoscale 8 10615
[18] Matteini F, Tütüncüoglu G, Potts H, Jabeen F and Fontcuberta i Morral A 2015 Cryst. Growth Des. 15 3105
[19] Cohin Y, Mauguin O, Largeau L, Patriarche G, Glas F, Sondergard E and Harmand J C 2013 Nano Lett. 13 2743
[20] Dick K A, Deppert K, Martensson T, Mandl B, Samuelson L and Seifert W 2005 Nano Lett. 5 761
[21] Fu Y Q, Colli A, Fasoli A, Luo J K, Flewitt A J, Ferrari A C, Milne W I 2009 J. Vac. Sci. Technol. B 27 1520
[22] Dubrovskii V G, Xu T, Álvarez A D, Plissard S R, Caroff P, Glas F and Grandidier B 2015 Nano Lett. 15 5580
[23] Munshi A M, Dheeraj D, Fauske V T, Kim D C, Huh J, Reinertsen J F, Ahtapodov L, Lee K D, Heidari B, van Helvoort A T J, Fimland B and Weman H 2014 Nano Lett. 14 960
[24] Fuhrmann B, Leipner H S, Höche H R, Schubert L, Werner P and Gösele U 2005 Nano Lett. 5 2524
[25] Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U and Zacharias M 2007 Small 3 76
[26] Kang Y B, Tang J L, Wang P H, Lin F Y, Fang X, Fang D, Wang D K, Wang X H and Wei Z P 2018 Mater. Res. Express 6 035012
[1] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[2] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[3] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[4] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[5] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[6] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[7] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[8] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[9] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[10] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[11] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[12] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[13] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[14] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[15] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
No Suggested Reading articles found!