Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077501    DOI: 10.1088/1674-1056/abf916
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)

Lu-Ling Li(李炉领)1, Xiao-Yu Yue(岳小宇)1,†, Wen-Jing Zhang(张文静)1, Hu Bao(鲍虎)3, Dan-Dan Wu(吴丹丹)1, Hui Liang(梁慧)1, Yi-Yan Wang(王义炎)1, Yan Sun(孙燕)1, Qiu-Ju Li(李秋菊)3, and Xue-Feng Sun(孙学峰)2,1,‡
1 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China;
3 School of Physics & Material Science, Anhui University, Hefei 230039, China
Abstract  The magnetism and magnetocaloric effect (MCE) of rare-earth-based tungstate compounds $R_{3}$BWO$_{9 }$ ($R = {\rm Gd}$, Dy, Ho) have been studied by magnetic susceptibility, isothermal magnetization, and specific heat measurements. No obvious long-range magnetic ordering can be found down to 2 K. The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems. The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kg$\cdot$K at 2 K for Gd$_{3}$BWO$_{9}$, 28.5 J/kg$\cdot$K at 6 K for Dy$_{3}$BWO$_{9}$, and 29.76 J/kg$\cdot$K at 4 K for Ho$_{3}$BWO$_{9}$, respectively, under a field change of 0-7 T. Especially for Gd$_{3}$BWO$_{9}$, the maximum value of magnetic entropy change ($-\Delta S_{M}^{\max}$) and adiabatic temperature change ($ - \Delta T_{\rm ad}^{\max}$) are 36.75 J/kg$\cdot$K and 5.56 K for a low field change of 0-3 T, indicating a promising application for low temperature magnetic refrigeration.
Keywords:  magnetocaloric effect      short-range spin correlation  
Received:  25 March 2021      Revised:  13 April 2021      Accepted manuscript online:  19 April 2021
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832209, 11874336, and 11904003), the National Basic Research Program of China (Grant No. 2016YFA0300103), the Innovative Program of Hefei Science Center CAS (Grant No. 2019HSC-CIP001), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA09).
Corresponding Authors:  Xiao-Yu Yue, Xue-Feng Sun     E-mail:  xyyue@ahu.edu.cn;xfsun@ustc.edu.cn

Cite this article: 

Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰) Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho) 2021 Chin. Phys. B 30 077501

[1] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[2] Balli M, Jandl S, Fournier P and Dimitrov D Z 2016 Appl. Phys. Lett. 108 102401
[3] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305
[4] Franco V, Bláquez J S, lpus J J, Law J Y, Moreno-Ramíez L M and Conde A 2018 Prog. Mater. Sci. 93 112
[5] Brown G V 1976 J. Appl. Phys. 47 3673
[6] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[7] Numazawa T, Kamiya K, Utaki T and Matsumoto K 2014 Cryogenics 62 185
[8] Pakhira S, Mazumdar C, Ranganathan R and Avdeev M 2017 Sci. Rep. 7 7367
[9] Lorusso G, Sharples J W, Palacios E, Roubeau O, Brechin E K, Sessoli R, Rossin A, Tuna F, McInnes E J L, Collison D and Evangelisti M 2013 Adv. Mater. 25 4653
[10] Palacios E, Rodríguez-Velamazán J A, Evangelisti M, Mclntyre G J, Lorusso G, Visser D, de Jongh L J and Boatner L A 2014 Phys. Rev. B 90 214423
[11] Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and NamiKi T 2012 Appl. Phys. Lett. 100 152403
[12] Wang W, Li Y, Li L, Li Q, Wang D, Zhu J, Li J and Zeng M 2021 J. Phys.: Condens. Matter 33 015802
[13] Balli M, Jandl S, Fournier P, Vermette J and Dimitrov D Z 2018 Phys. Rev. B 98 184414
[14] Monteiro J C B, dos Reis R D and Gandra F G 2015 Appl. Phys. Lett. 106 194106
[15] Yin L H, Yang J, Tong P, Luo X, Song W H, Dai J M, Zhu X B and Sun Y P 2017 Appl. Phys. Lett. 110 192904
[16] Karotsis G, Kennedy S, Teat S J, Beavers C M, Fowler D A, Morales J J, Evangelisti M, Dalgarno S J and Brechin E K 2010 J. Am. Chem. Soc. 132 12983
[17] Jiang X, Ouyang Z W, Wang Z X, Xia Z C and Rao G H 2018 J. Phys. D: Appl. Phys. 51 045001
[18] Liu J D, Ouyang Z W, Liu X C, Cao J J, Wang Z X, Xia Z C and Rao G H 2020 J. Appl. Phys. 127 173902
[19] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett. 33 126101
[20] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401
[21] Mahana S, Manju U and Topwal D 2017 J. Phys. D: Appl. Phys. 50 035002
[22] Midya A, Khan N, Bhoi D and Mandal P 2014 J. Appl. Phys. 115 17E114
[23] Das M, Roy S and Mandal P 2017 Phys. Rev. B 96 174405
[24] Dey K, Indra A, Majumdar S and Giri S 2017 J. Mater. Chem. C 5 1646
[25] Dutta A, Jana R, Mukherjee G D and Das I 2020 J. Alloys Compd. 846 156221
[26] Lei D D, Ouyang Z W, Yue X Y, Yin L, Wang Z X, Wang J F, Xia Z C and Rao G H 2018 J. Appl. Phys. 124 233904
[27] Ashtar M, Guo J, Wan Z, Wang Y, Gong G Liu Y, Su Y and Tian Z 2020 Inorg. Chem. 59 5368
[28] McCusker L B, Von Dreele R B, Cox D E, Louër D and Scardi P 1999 J. Appl. Cryst. 32 36
[29] Basu T, Singh K, Gohil S, Ghosh S and Sampathkumaran E V 2015 J. Appl. Phys. 118 234103
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[3] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[4] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[7] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[8] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[9] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[10] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[11] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[12] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[13] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[14] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[15] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
No Suggested Reading articles found!