Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 053101    DOI: 10.1088/1674-1056/abd46a

Configuration interaction study on low-lying states of AlCl molecule

Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  High-level ab initio calculations of the Λ-S states for aluminum monoiodide (AlCl) molecule are performed by utilizing the explicitly correlated multireference configuration interaction (MRCI-F12) method. The Davidson correction and scalar relativistic correction are investigated in the calculations. Based on the calculation by the MRCI-F12 method, the spin-orbit coupling (SOC) effect is investigated with the state-interacting technique. The adiabatic potential energy curves (PECs) of the 13 Λ-S states and 24 Ω states are calculated. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. Finally, the transition properties of 0+(2)-X0+, 1(1)-X0+, and 1(2)-X0+ transitions are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), and the spontaneous radiative lifetimes.
Keywords:  AlCl molecule      MRCI-F12      potential energy curves      spin-orbit coupling  
Received:  20 October 2020      Revised:  07 December 2020      Accepted manuscript online:  17 December 2020
PACS:  31.15.A- (Ab initio calculations)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11874177, 11874179, and 11574114), the Natural Science Foundation of Jilin Province, China (Grant No. 20180101289JC), and the High Performance Computing Center of Jilin University and High Performance Computing Cluster Tiger@IAMP (Theoretical Simulation Laboratory of Generalized Atomic, Molecular, and Energy Researches at Institute of Atomic and Molecular Physics).
Corresponding Authors:  Bing Yan     E-mail:

Cite this article: 

Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰) Configuration interaction study on low-lying states of AlCl molecule 2021 Chin. Phys. B 30 053101

[1] Cernicharo J and Guélin M 1987 Astron. Astrophys. 183 L10
[2] Rosenwaks S 1976 J. Chem. Phys. 65 3668
[3] Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y and Shao J X 2016 J. Chem. Phys. 145 024309
[4] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[5] Yang R, Tang B and Gao T 2016 Chin. Phys. B 25 043101
[6] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[7] Sharma D 1950 American Astronomical Society 113 210
[8] Hedderich H G, Dulick M and Bernath P F 1993 J. Chem. Phys. 99 8363
[9] Langhoff S R, Bauschlicher C W and Taylor P R 1988 J. Chem. Phys. 88 5715
[10] Dearden D V, Johnson R D and Hudgens J W 1993 J. Chem. Phys. 99 7521
[11] Saksena M D, Dixit V S and Singh M 1998 J. Mol. Spectrosc. 187 1
[12] Mahieu E, Dubqis I and Bredohl H 1989 J. Mol. Spectrosc. 134 317
[13] Rogowsiu D F and Fontijn A 1987 Chem. Phys. Lett. 137 219
[14] Brites D H V and Hochlaf M 2008 J. Phys. Chem. A 112 13419
[15] Yousefi M and Bernath P F 2018 The Astrophysical Journal Supplement Series 237 8
[16] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[17] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[18] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
[19] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[20] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[21] Peng D and Hirao K 2009 J. Chem. Phys. 130 044102
[22] Reiher M and Wolf A 2004 J. Chem. Phys. 121 10945
[23] Pitzer R M and Winter N W 1988 J. Phys. Chem. 92 3061
[24] Tilson J L and Ermler W C 2014 Theoretical Chemistry Accounts 133 1564
[25] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[26] Jastrzebski W, Kowalczyk P, Szczepkowski J, Allouche A R, Crozet P and Ross A J 2015 J. Chem. Phys. 113 2116
[27] Martin W C and Zalubas R 1979 J. Phys. Chem. Ref. Data 8 817
[28] Radziemski L J 1969 J. Opt. Soc. Am. 59 424
[29] Radziemski J, Leon J and Kaufman V 1974 J. Opt. Soc. Am. 64 366
[30] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
[31] Ram R S, Rai S B, Upadhya K N and Rai D K 1982 Phys. Scr. 26 383
[32] Hildenbrand D L and Theard L P 1969 J. Chem. Phys. 50 5350
[33] Kumar Y, Khanna B N and Varshney D C 1985 Indian J. Pure Appl. Phys 23 128
[34] Le Roy R J 2017 J. Quantum Spectrosc. Radiat. Transfer 186 167-168
[35] Mahieu E, Dubois I and Bredohl H 1989 H. J. Mol. Spectrosc. 138 264
[1] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[2] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[3] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[4] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[7] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[8] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[9] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[10] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[11] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[12] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[13] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[14] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[15] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
No Suggested Reading articles found!