Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127303    DOI: 10.1088/1674-1056/abc237

Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study

Ya-Kui Weng(翁亚奎)1,†, Meng-Lan Shen(沈梦兰)2, Jie Li(李杰)3, and Xing-Ao Li(李兴鳌)1,
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 Grünberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  As one of intriguing physical results of electronic reconstruction, the metal-insulator transition plays an important role in exploring new electronic devices. In this study, the density functional theory is employed to investigate the metal-insulator transition in (LaTiO3)m/(CaVO3)n superlattices. Herein, three kinds of physical avenues, i.e., stacking orientation, epitaxial strain, and thickness periods, are used to tune the metal-insulator transition. Our calculations find that the [001]-and [110]-oriented (LaTiO3)1/(CaVO3)1 superlattices on SrTiO3 substrate are insulating, while [111]-oriented case is metallic. Such metallic behavior in [111] orientation can also be modulated by epitaxial strain. Besides the structural orientation and strain effect, the highly probable metal-insulator transition is presented in (LaTiO3)m/(CaVO3)n superlattices with increasing thickness. In addition, several interesting physical phenomena have also been revealed, such as selective charge transfer, charge ordering, and orbital ordering.
Keywords:  metal-insulator transition      superlattices      charge transfer  
Received:  14 May 2020      Revised:  12 October 2020      Published:  26 November 2020
PACS:  73.21.Cd (Superlattices)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804168 and 51872145), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20180736 and BK20190726), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB140009), and the Science Foundation from Nanjing University of Posts and Telecommunications, China (Grant No. NY219026).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌) Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study 2020 Chin. Phys. B 29 127303

[1] Dagotto E Science 309 257 DOI: 10.1126/science.11075592005
[2] Dong S, Liu J M, Cheong S W and Ren Z Adv. Phys. 64 519 DOI: 10.1080/00018732.2015.11143382015
[3] Dong S and Liu J M Mod. Phys. Lett. B 26 1230004 DOI: 10.1142/S02179849123000492012
[4] Picozzi S and Ederer C J. Phys.: Condens. Matter 21 303201 DOI: 10.1088/0953-8984/21/30/3032012009
[5] Imada M, Fujimori A and Tokura Y Rev. Mod. Phys. 70 1039 DOI: 10.1103/RevModPhys.70.10391998
[6] Kim B, Liu P, Tomczak J M and Franchini C Phys. Rev. B 98 075130 DOI: 10.1103/PhysRevB.98.0751302018
[7] Golalikhani M, Lei Q, Chandrasena R, Kasaei L, Park H, Bai J, Orgiani P, Ciston J, Sterbinsky G, Arena D, Shafer P, Arenholz E, Davidson B, Millis A, Gray A and Xi X Nat. Commun. 9 2206 DOI: 10.1038/s41467-018-04546-52018
[8] Paul A, Mukherjee A, Dasgupta I, Paramekanti A and Dasgupta T S Phys. Rev. Lett. 122 016404 DOI: 10.1103/PhysRevLett.122.0164042019
[9] Peil O E, Hampel A, Ederer C and Georges A Phys. Rev. B 99 245127 DOI: 10.1103/PhysRevB.99.2451272019
[10] Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P and Li X A J. Appl. Phys. 126 085307 DOI: 10.1063/1.51020762019
[11] Liu H D Chin. Phys. B 28 107102 DOI: 10.1088/1674-1056/ab42792019
[12] Yang L J, Wu L Z and Dong S Chin. Phys. B 24 127702 DOI: 10.1088/1674-1056/24/12/1277022015
[13] Guo H W, Noh J, Dong S, Rack P, Gai Z, Xu X S, Dagotto E, Shen J and Ward T Nano Lett. 13 3749 DOI: 10.1021/nl40168422013
[14] Saleem M S, Song C, Peng J J, Cui B, Li F, Gu Y D and Panb F Appl. Phys. Lett. 110 072406 DOI: 10.1063/1.49767002017
[15] Beck S, Sclauzero G, Chopra U and Ederer C Phys. Rev. B 97 075107 DOI: 10.1103/PhysRevB.97.0751072018
[16] Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V and Ramanathan S J. Appl. Phys. 107 114516 DOI: 10.1063/1.34088992010
[17] Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G and Triscone J M Adv. Mater. 22 5517 DOI: 10.1002/adma.v22.482010
[18] Zhang K H L, Du Y, Sushko P V, Bowden M E, Shutthanandan V, Sallis S, Piper L F J and Chambers S A Phys. Rev. B 91 155129 DOI: 10.1103/PhysRevB.91.1551292015
[19] Lee J H and Rabe K M Phys. Rev. Lett. 107 067601 DOI: 10.1103/PhysRevLett.107.0676012011
[20] Dagotto E Science 318 1076 DOI: 10.1126/science.11510942007
[21] Mannhart J and Schlom D G Science 327 1607 DOI: 10.1126/science.11818622010
[22] Takagi H and Hwang H Y Science 327 1601 DOI: 10.1126/science.11825412010
[23] Hammerl G and Spaldin N Science 332 922 DOI: 10.1126/science.12062472011
[24] Bhattacharya A, May S J, Velthuis S G E te, Warusawithana M, Zhai X, Jiang B, Zuo J M, Fitzsimmons M R, Bader S D and Eckstein J N Phys. Rev. Lett. 100 257203 DOI: 10.1103/PhysRevLett.100.2572032008
[25] Dong S, Yu R, Yunoki S, Alvarez G, Liu J M and Dagotto E Phys. Rev. B 78 201102 DOI: 10.1103/PhysRevB.78.2011022008
[26] Aruta C, Adamo C, Galdi A, Orgiani P, Bisogni V, Brookes N B, Cezar J C, Thakur P, Perroni C A, Filippis G D, Cataudella V, Schlom D G, Maritato L and Ghiringhelli G Phys. Rev. B 80 140405 DOI: 10.1103/PhysRevB.80.1404052009
[27] Nanda B R K and Satpathy S Phys. Rev. B 79 054428 DOI: 10.1103/PhysRevB.79.0544282009
[28] Ohtomo A and Hwang H Y Nature 427 423 DOI: 10.1038/nature023082004
[29] Niu W, Chen Y D, Gan Y L, Zhang Y, Zhang X Q, Yuan X, Cao Z, Liu W Q, Xu Y B, Zhang R, Pryds N, Chen Y Z, Pu Y and Wang X F Appl. Phys. Lett. 115 061601 DOI: 10.1063/1.51088132019
[30] Cwik M, Lorenz T, Baier J, Muller R, Andre G, Bouree F, Lichtenberg F, Freimuth A, Schmitz R, Muller-Hartmann E and Braden M Phys. Rev. B 68 060401 DOI: 10.1103/PhysRevB.68.0604012003
[31] Chamberland B L and Danielson P S J. Solid State Chem. 3 243 DOI: 10.1016/0022-4596(71)90035-11971
[32] Komarek A C, Roth H, Cwik M, Stein W D, Baier J, Kriener M, Bourèe F, Lorenz T and Braden M Phys. Rev. B 75 224402 DOI: 10.1103/PhysRevB.75.2244022007
[33] Falcon H, Alonso J A, Casais M T, Martinez-Lope M J and Sanchez-Benitez J J. Solid State Chem. 177 3099 DOI: 10.1016/j.jssc.2004.05.0102004
[34] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K Phys. Rev. Lett. 100 136406 DOI: 10.1103/PhysRevLett.100.1364062008
[35] Kresse G and Hafner J Phys. Rev. B 47 558 DOI: 10.1103/PhysRevB.47.5581993
[36] Kresse G and Furthmüller J Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.111691996
[37] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P Phys. Rev. B 57 1505 DOI: 10.1103/PhysRevB.57.15051998
[38] Zhang H M, Weng Y K, Yao X Y and Dong S Phys. Rev. B 91 195145 DOI: 10.1103/PhysRevB.91.1951452015
[39] Park S Y, Kumar A and Rabe K M Phys. Rev. Lett. 118 087602 DOI: 10.1103/PhysRevLett.118.0876022017
[40] Weng Y K, Zhang J J, Gao B and Dong S Phys. Rev. B 95 155117 DOI: 10.1103/PhysRevB.95.1551172017
[41] Dong S, Zhang Q F, Yunoki S, Liu J M and Dagotto E Phys. Rev. B 86 205121 DOI: 10.1103/PhysRevB.86.2051212012
[42] Rondinelli J M and Spaldin N A Adv. Mater. 23 3363 DOI: 10.1002/adma.2011011522011
[43] Kumar D, David A, Fouchet A, Pautrat A, Varignon J, Jung C U, Lders U, Domengs B, Copie O, Ghosez P and Prellier W Phys. Rev. B 99 224405 DOI: 10.1103/PhysRevB.99.2244052019
[44] Lu H S and Guo G Y Phys. Rev. B 99 104405 DOI: 10.1103/PhysRevB.99.1044052019
[45] Weng Y K, Huang X, Tang Y K and Dong S 2014 J. Appl. Phys. 115 17E108 DOI: 10.1063/1.4860016
[46] An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y and Dong S Phys. Rev. B 96 235112 DOI: 10.1103/PhysRevB.96.2351122017
[47] Wang X R, Li C J, Lü W M, Paudel T R, Leusink D P, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey J M D, Tsymbal E Y, Ariando and Hilgenkamp H Science 349 716 DOI: 10.1126/science.aaa51982015
[48] He X and Jin K J Phys. Rev. B 93 161108 DOI: 10.1103/PhysRevB.93.1611082016
[49] Varignon J, Bibes M and Zunger A Nat. Commun. 10 1658 DOI: 10.1038/s41467-019-09698-62019
[1] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[2] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[3] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[4] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[5] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[6] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[7] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[8] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[9] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[10] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[11] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[12] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[13] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[14] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[15] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
No Suggested Reading articles found!