|
|
Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor |
Lei Xu(许磊)1, Tian-Jie Zhang(张天杰)1, Qiao-Li Zhang(张巧丽)1, Da-Peng Yang(杨大鹏)1,2 |
1 School of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou 450046, China; 2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract In this work, we theoretically probe into the photo-induced hydrogen bonding effects between S0 state and S1 state as well as the excited state intramolecular proton transfer (ESIPT) behavior for a novel 2-[1,3]dithian-2-yl-6-(7 aH-indol-2-yl)-phenol (DIP) probe system. We first study the ground-state hydrogen bonding O-H…N behavior for DIP. Then we analyze the primary geometrical parameters (i.e., bond length, bond angle, and infrared (IR) stretching vibrational mode) involved in hydrogen bond, and confirm that the O-H…N of DIP should be strengthened in the first excited state. It is the significant prerequisite for ESIPT reaction. Combining the frontier molecular orbitals (MOs) with vertical excitation analyses, the intramolecular charge transfer (ICT) phenomenon can be found for the DIP system, which reveals that the charge redistribution facilitates ESIPT behavior. By constructing potential energy curves for DIP along the ESIPT reactional orientation, we obtain quite a small energy barrier (3.33 kcal/mol) and affirmed that the DIP molecule undergoes ultrafast ESIPT process once it is excited to the S1 state and quickly transfers its proton, forming DIP-keto tautomer. That is why no fluorescence of DIP can be observed in experiment, which further reveals the ultrafast ESIPT mechanism proposed in this work.
|
Received: 12 January 2020
Revised: 23 February 2020
Accepted manuscript online:
|
PACS:
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574083). |
Corresponding Authors:
Da-Peng Yang
E-mail: dpyang_ncwu@163.com
|
Cite this article:
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏) Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor 2020 Chin. Phys. B 29 053102
|
[1] |
Zhang S G 2003 Nat. Biotechnol 21 1171
|
[2] |
Basabe-Desmonts L, Reinhoudt D and Crego-Calama M 2007 Chem. Soc. Rev. 36 993
|
[3] |
Riel A M S, Decato D A, Sun J Y, Massena C J, Jessop M J and Berryman O B 2018 Chem. Sci. 9 5828
|
[4] |
Zhang H, Wang S F, Sun Q and Smith S C 2009 Phys. Chem. Chem. Phys. 11 8422
|
[5] |
Zhao G J, Northrop B H, Stang P J and Han K L 2010 J. Phys. Chem. A 114 3418
|
[6] |
Liu J J, Hamza A and Zhan C G 2009 J. Am. Chem. Soc. 131 11964
|
[7] |
Suh S B, Kim J C, Choi Y C, Yun S and Kim K S 2004 J. Am. Chem. Soc. 126 2186
|
[8] |
Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
|
[9] |
Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
|
[10] |
Song Y Z, Liu S, Yang Y F, Wei D M, Pan J and Li Y Q 2019 Spectrochim. Acta Part. A 208 309
|
[11] |
Chen C L, Tseng H W, Chen Y A, Liu J Q, Chao C M, Liu K M, Lin T C, Hung C H, Chou Y L, Lin T C and Chou P T 2016 J. Phys. Chem. A 120 1020
|
[12] |
Liu S S, Zhao Y, Zhang C Z, Lin L L, Li Y Q and Song Y Z 2019 Spectrochim. Acta Part. A 219 164
|
[13] |
Ma H P, Liu N and Huang J D 2017 Sci. Rep. 7 331
|
[14] |
Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
|
[15] |
Zhao J F, Chen J S, Liu J Y and Hoffmann M R 2015 Phys. Chem. Chem. Phys. 17 11990
|
[16] |
Huang J D and Ma H P 2018 Org. Chem. Front 5 2749
|
[17] |
Zhao J F, Chen J S, Cui Y L, Wang J, Xia L X, Dai Y M, Song P and Ma F C 2015 Phys. Chem. Chem. Phys. 17 1142
|
[18] |
Li Y O, Yang Y F and Ding Y 2017 Sci. Rep. 7 1574
|
[19] |
Ma H P, Chai S, Chen D Y and Huang J D 2017 IUCrJ. 4 695
|
[20] |
Li J, Li X D, Cheng S B, Song P and Zhao J F 2018 J. At. Mol. Sci. 9 1
|
[21] |
Song P, Guan B J, Zhou Q, Zhao M Y, Huang J D and Ma F C 2016 Sci. Rep. 6 35555
|
[22] |
Song Y Z, Liu S S, Lu J J, Zhang H, Zhang C Z and Du J 2019 Chin. Phys. B 28 093102
|
[23] |
Yang D P, Zhao J F, Jia M and Song X Y 2017 RSC Adv. 7 34034
|
[24] |
Huang J D, Zhao J F, Yu K, Huang X H, Cheng S B and Ma H P 2018 Acta Crystallorgr. B 74 705
|
[25] |
Song Y Z, Liu S, Ma Y Z, Yang Y F, Li Y Q and Xu J H 2018 J. Mol. Struct. 1173 341
|
[26] |
Zhao J F, Yao H, Liu J Y and Hoffmann M R 2015 J. Phys. Chem. A 119 681
|
[27] |
Wang L F, Wang Y, Zhao J and Zhao J F 2019 J. Phys. Org. Chem. 32 3954
|
[28] |
Liu S S, Pan J, Wei D M, Xu J H, Zhou Y and Song Y Z 2019 Can. J. Phys. 97 721
|
[29] |
Yang D P, Li P Y, Zheng R, Wang Y S and Lv J 2016 Theor. Chem. Acc 135 42
|
[30] |
Chen H, Zhao J F, Huang J D and Liang Y 2019 Phys. Chem. Chem. Phys. 21 7447
|
[31] |
Zhang Q L, Yang G, Song X Y, Zhao J F and Yang D P 2018 J. At. Mol. Sci. 9 7
|
[32] |
Lu X M, Zhai Y C, Zhang M X and Song Y Z 2018 J. Phys. Org. Chem. 31 3821
|
[33] |
Yi J C and Fang H 2018 Struct. Chem. 29 1341
|
[34] |
Zhao J F, Dong H, Yang H and Zheng Y J 2018 Org. Chem. Front. 5 2710
|
[35] |
Yang D P, Zhao J F, Yang G, Song N H, Zheng R and Wang Y S 2017 J. Mol. Liq 241 1003
|
[36] |
Li H, Ma L N, Yin H and Shi Y 2018 Chin. Phys. B 27 098201
|
[37] |
Ni M and Fang H 2019 Chem. Papers 73 1561
|
[38] |
Yi J C and Fang H 2017 J. Mol. Model 23 312
|
[39] |
Chang I J, Hwang K S and Chang S K 2017 Dyes Pigm. 137 69
|
[40] |
Frisch, M J, et al. 2009 Gaussian 09 Revision D. 01 Gaussian, Inc, Wallingford CT
|
[41] |
Lee C, Yang W T and Parr R G 1988 Phys. Rev. B 37 785
|
[42] |
Kolth W, Becke A D and Parr R G 1996 J. Phys. Chem. 100 12974
|
[43] |
Feller D 1996 J. Comput. Chem. 17 1571
|
[44] |
Mennucci B, Cances E and Tomasi J 1997 J. Phys. Chem. B 101 10506
|
[45] |
Cances E, Mennucci B and Tomasi J 1997 J. Chen. Phys. 107 3032
|
[46] |
Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
|
[47] |
Johnson E R, Keinan S, Mori-Sanzhez P, Contreras-Garcia J, Cohen A J and Yang W T 2010 J. Am. Chem. Soc. 132 6498
|
[48] |
Zhou P W, Hoffmann M, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
|
[49] |
Ni M, Su S Y and Fang H 2019 Theor. Chem. Acc. 138 125
|
[50] |
Xiao D, Zhang G L, Wang H Y, Tang G Q and Chen W J 2000 Chin. Phys. Lett. 17 809
|
[51] |
Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
|
[52] |
Zhou P W, Li P, Zhao Y L and Han K L 2019 J. Phys. Chem. Lett. 10 6929
|
[53] |
Yi J C and Fang H 2018 Photochem. Photobiol. 94 27
|
[54] |
Meng Q C, Yang S Q, Ren G H and Chu T S 2018 Chin. Phys. Lett. 35 098201
|
[55] |
Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681
|
[56] |
Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
|
[57] |
Zhao J F, Song P, Cui Y L, Liu X M, Sun S W, Hou S Y and Ma F C 2014 Spectrochim. Acta Part. A 131 282
|
[58] |
Sobolewski A L and Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065
|
[59] |
Serrano-Andres L and Merchan M 2009 J. Photochem. Photobiol. C 10 21
|
[60] |
Saga Y, Shibata Y and Tamiaki H 2010 J. Photochem. Photobiol. C 11 15
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|