|
|
Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound |
Guang Yang(杨光)1,†, Kaifeng Chen(陈凯锋)1, Gang Wang(王岗)1, and Dapeng Yang(杨大鹏)2 |
1 Basic Teaching Department, Jiaozuo University, Jiaozuo 454000, China 2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract We execute the density functional theory (DFT) and time-dependent density functional theory (TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer (ESIPT) mechanism for the novel 2,6-dimethyl phenyl (DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared (IR) spectra, we find O–H⋯N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals (MOs) analyses, we infer charge redistribution and charge transfer (ICT) phenomena motivate ESIPT trend. Via probing into potential energy curves (PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state (TS) structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future.
|
Received: 21 June 2020
Revised: 15 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Corresponding Authors:
†Corresponding author. E-mail: yxd5460@163.com
|
About author: †Corresponding author. E-mail: yxd5460@163.com * Project supported by the Science and Technology Research Project of Henan Province, China (Grant No. 172102210391) and the Higher Vocational School Program for Key Teachers from Department of Education of Henan Province, China (Grant No. 2019GZGG042). |
Cite this article:
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏) Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound 2020 Chin. Phys. B 29 103103
|
[1] |
|
[2] |
|
[3] |
Li J, Wu Y, Xu Z, Liao Q, Zhang H, Zhang Y, Xiao L, Yao J, Fu H 2017 J. Mater. Chem. C 5 12235 DOI: 10.1039/c7tc04207h
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
Zhao J, Chen J, Liu J, Hoffmann M 2015 Phys. Chem. Chem. Phys. 17 11990 DOI: 10.1039/C4CP05651E
|
[10] |
Qu R, Liu H, Feng M, Yang X, Wang Z 2012 J. Chem. Eng. Data 57 2442 DOI: 10.1021/je300407g
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P, Ma F 2015 Phys. Chem. Chem. Phys. 17 1142 DOI: 10.1039/C4CP04135F
|
[20] |
|
[21] |
|
[22] |
Chen H, Zhao J, Huang J, Liang Y 2019 Phys. Chem. Chem. Phys. 21 7447 DOI: 10.1039/C9CP00374F
|
[23] |
|
[24] |
Xiao H, Chen K, Cui D, Jiang N, Yin G, Wang J, Wang R 2014 New J. Chem. 38 2386 DOI: 10.1039/c3nj01557b
|
[25] |
Stasyuk A, Chen Y, Chen C, Wu P, Chou P 2016 Phys. Chem. Chem. Phys. 18 24428 DOI: 10.1039/C6CP05236C
|
[26] |
Tang K, Chen C, Chuang H, Chen J, Chen Y, Lin Y, Shen J, Hu W, Chou P 2011 J. Phys. Chem. Lett. 2 3063 DOI: 10.1021/jz201439w
|
[27] |
Dahal D, McDonald L, Bi X, Abeywickrama C, Gombedza F, Konopka M, Paruchuri S, Pang Y 2017 Chem. Commun. 53 3697 DOI: 10.1039/C7CC00700K
|
[28] |
Wang J, Li Y, Duah E, Paruchuri S, Zhou D, Pang Y 2014 J. Mater. Chem. B 2 2008 DOI: 10.1039/c3tb21339k
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
Li W, Guo B, Chang C, Guo X, Zhang M, Li Y 2016 J. Mater. Chem. A 4 10135 DOI: 10.1039/C6TA04030F
|
[38] |
Li X, Zhai Y, Zhang M, Song Y 2018 J. Phys. Org. Chem. 31 3821
|
[39] |
|
[40] |
Peng C, Shen J, Chen Y, Wu P, Hung W, Hu W, Chou P 2015 J. Am. Chem. Soc. 137 14349 DOI: 10.1021/jacs.5b08562
|
[41] |
Abeywickrama C, Wijesinghe K, Stahelin R, Pang Y 2017 Chem. Commun. 53 5886 DOI: 10.1039/C7CC03417B
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
Bultinck P, Alsenoy C, Ayers P, Carbo-Dorca R 2007 J. Chem. Phys. 126 144111 DOI: 10.1063/1.2715563
|
[47] |
Geldof D, Krishtal A, Blockhuys F, Alsenoy C 2011 J. Chem. Theory Comput. 7 1328 DOI: 10.1021/ct100743h
|
[48] |
Verstraelen T, Ayers P, Speybroeck V, Waroquier M 2013 J. Chem. Theory Comput. 9 2221 DOI: 10.1021/ct4000923
|
[49] |
Zhao J, Yao H, Liu J, Hoffmann M 2015 J. Phys. Chem. A 119 681 DOI: 10.1021/jp5120459
|
[50] |
|
[51] |
|
[52] |
|
[53] |
Moorthy J, Natarajan P, Venkatakrishnan, Huang D, Chow T 2007 Org. Lett. 9 5215 DOI: 10.1021/ol7023136
|
[54] |
Zhao G, Northrop B, Stang P, Han K 2010 J. Phys. Chem. A 114 3418 DOI: 10.1021/jp911597z
|
[55] |
|
[56] |
Nakazato T, Kamatsuka T, Inoue J, Sakurai T, Seki S, Shinokubo H, Miyake Y 2018 Chem. Commun. 54 5177 DOI: 10.1039/C8CC01937A
|
[57] |
|
[58] |
Zhao G, Northrop B, Han K, Stang P 2010 J. Phys. Chem. A 114 9007 DOI: 10.1021/jp105009t
|
[59] |
Zhao G, Chen R, Sun M, Liu J, Li G, Gao Y, Han K, Yang X, Sun L 2008 Chem. Eur. J. 14 6935 DOI: 10.1002/chem.200701868
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
Palafox M, Talaya J, Guerrero-Martinez A, Tardajos G, Kumar H, Vats J, Rastogi V 2010 Spectrosc. Lett. 43 51 DOI: 10.1080/00387010903261149
|
[68] |
|
[69] |
|
[70] |
|
[71] |
Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y, Chou P 2011 J. Am. Chem. Soc. 133 17738 DOI: 10.1021/ja2062693
|
[72] |
|
[73] |
Hsieh C, Chou P, Shih C, Chuang W, Chung M, Lee J, Joo T 2011 J. Am. Chem. Soc. 133 2932 DOI: 10.1021/ja107945m
|
[74] |
Tseng H, Liu J, Chen Y, Chao C, Liu K, Chen C, Lin T, Hung C, Chou Y, Lin T, Wang T, Chou O 2015 J. Phys. Chem. Lett. 6 1477 DOI: 10.1021/acs.jpclett.5b00423
|
[75] |
Wang J, Chu Q, Liu X, Wesdemiotis C, Pang Y 2013 J. Phys. Chem. B 117 4127 DOI: 10.1021/jp401612u
|
[76] |
|
[77] |
McDonald L, Liu B, Taraboletti A, Whiddon K, Shriver L, Konopka M, Liu Q, Pang Y 2016 J. Mater. Chem. B 4 7902 DOI: 10.1039/C6TB02456D
|
[78] |
Wang J, Chen W, Liu X, Wesdemiotis C, Pang Y 2014 J. Mater. Chem. B 2 3349 DOI: 10.1039/c4tb00020j
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|