Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 103103    DOI: 10.1088/1674-1056/aba9bb
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound

Guang Yang(杨光)1,†, Kaifeng Chen(陈凯锋)1, Gang Wang(王岗)1, and Dapeng Yang(杨大鹏)2
1 Basic Teaching Department, Jiaozuo University, Jiaozuo 454000, China
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  

We execute the density functional theory (DFT) and time-dependent density functional theory (TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer (ESIPT) mechanism for the novel 2,6-dimethyl phenyl (DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared (IR) spectra, we find O–H⋯N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals (MOs) analyses, we infer charge redistribution and charge transfer (ICT) phenomena motivate ESIPT trend. Via probing into potential energy curves (PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state (TS) structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future.

Keywords:  infrared vibrational spectra      intramolecular charge transfer      potential energy curve      excited state intramolecular proton transfer  
Received:  21 June 2020      Revised:  15 July 2020      Accepted manuscript online:  28 July 2020
PACS:  31.15.ee (Time-dependent density functional theory)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Corresponding Authors:  Corresponding author. E-mail: yxd5460@163.com   
About author: 
†Corresponding author. E-mail: yxd5460@163.com
* Project supported by the Science and Technology Research Project of Henan Province, China (Grant No. 172102210391) and the Higher Vocational School Program for Key Teachers from Department of Education of Henan Province, China (Grant No. 2019GZGG042).

Cite this article: 

Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏) Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound 2020 Chin. Phys. B 29 103103

Fig. 1.  

View of DMP-HBT-py and its proton-transfer DMP-HBT-py-PT tautomer at B3LYP/TZVP (hexane solvent) level. Red: O atom; blue: H atom; yellow: C atom; violet: N atom; green: S atom.

DMP-HBT-py DMP-HBT-py-PT
S0 S1 S0 S1
O–H 0.9924 1.0211 1.5904 1.7569
H–N 1.7378 1.6180 1.0640 1.0363
δ (O–H–N) 146.6° 151.1° 141.0° 135.6°
Table 1.  

Optimized geometrical parameters (bond length (in unit Å) and bond angle (in unit (°)) of hydrogen bond O–H⋯N of DMP-HBT-py and O⋯H–N of DMP-HBT-py-PT in S0 and S1 states based on the DFT/TDDFT methods with IEFPCM (hexane) model.

Fig. 2.  

Simulated IR spectra for DMP-HBT-py (a) and DMP-HBT-py-PT (b) structures in hexane solvent in S0 and S1 states. (a) The O–H stretching vibrational mode of DMP-HBT-py form. (b) The H–N stretching vibrational mode of DMP-HBT-py-PT structure.

Fig. 3.  

The HOMO and LUMO of DMP-HBT-py compound via TDDFT/B3LYP/TZVP theoretical level. In CDD map, the regions with increased electron densities are shown in violet, whereas those with decreased electron densities are shown in light blue.

Fig. 4.  

The constructed PECs of DMP-HBT-py system via fixing O–H bond length in S0 and S1 states.

Transition λ/nm f Composition CI/%
DMP-HBT-py S0 → S1 417 0.9397 H → L 92.75%
S0 → S2 336 0.14013 H → L + 1 81.45%
H-1 → L 8.28%
Table 2.  

Vertical excitation energies (in unit nm), oscillator strengths (f), and relevant transition composition as well as percentage (%) for DMP-HBT-py compound.

Fig. 5.  

The TS structure for DMP-HBT-py system along with ESIPT path. Herein, the imaginary frequency and its vibrational eigenvector are also shown.

[1]
Zhao G, Han K 2012 Acc. Chem. Res. 45 404 DOI: 10.1021/ar200135h
[2]
Zhao G, Han K, Lei Y, Dou Y 2007 J. Chem. Phys. 127 094307 DOI: 10.1063/1.2768347
[3]
Li J, Wu Y, Xu Z, Liao Q, Zhang H, Zhang Y, Xiao L, Yao J, Fu H 2017 J. Mater. Chem. C 5 12235 DOI: 10.1039/c7tc04207h
[4]
Zhao J, Dong H, Yang H, Zheng Y 2018 Org. Chem. Front 5 2710 DOI: 10.1039/C8QO00688A
[5]
Zhao H, Sun C, Liu X, Yin H, Shi Y 2019 Chin. Phys. B 28 018201 DOI: 10.1088/1674-1056/28/1/018201
[6]
Zhao J, Dong H, Zheng Y 2018 J. Lumin. 195 228 DOI: 10.1016/j.jlumin.2017.11.026
[7]
Miao C, Shi Y 2011 J. Comput. Chem. 32 3058 DOI: 10.1002/jcc.21888
[8]
Demchenko A, Tang K, Chou P 2013 Chem. Soc. Rev. 42 1379 DOI: 10.1039/C2CS35195A
[9]
Zhao J, Chen J, Liu J, Hoffmann M 2015 Phys. Chem. Chem. Phys. 17 11990 DOI: 10.1039/C4CP05651E
[10]
Qu R, Liu H, Feng M, Yang X, Wang Z 2012 J. Chem. Eng. Data 57 2442 DOI: 10.1021/je300407g
[11]
Li G, Chu T 2011 Phys. Chem. Chem. Phys. 13 20766 DOI: 10.1039/c1cp21470e
[12]
Liu S, Pan J, Wei D, Xu J, Zhou Y, Song Y 2019 Can. J. Phys. 97 721 DOI: 10.1139/cjp-2018-0503
[13]
Zhang M, Zhou Q, Du C, Ding Y, Song P 2016 RSC Adv. 6 59389 DOI: 10.1039/C6RA11140H
[14]
Yin H, Shi Y 2018 Chin. Phys. B 27 058201 DOI: 10.1088/1674-1056/27/5/058201
[15]
Zhao J, Dong H, Zheng Y 2018 J. Phys. Chem. A 122 1200 DOI: 10.1021/acs.jpca.7b10492
[16]
Li G, Li W, Zhang H, Sun X 2014 J. Theor. Comput. Chem. 13 1450006 DOI: 10.1142/S0219633614500060
[17]
Li G, Wang J, Zhang H, Li W, Wang F, Liang Y 2014 Chem. Phys. Lett. 616 30 DOI: 10.1016/j.cplett.2014.10.029
[18]
Ma H, Huang J 2016 RSC Adv. 6 96147 DOI: 10.1039/C6RA16907D
[19]
Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P, Ma F 2015 Phys. Chem. Chem. Phys. 17 1142 DOI: 10.1039/C4CP04135F
[20]
Li H, Ma L, Yin H, Shi Y 2018 Chin. Phys. B 27 098201 DOI: 10.1088/1674-1056/27/9/098201
[21]
Liu S, Ma Y, Yang Y, Liu S, Li Q, Song Y 2018 Chin. Phys. B 27 023103 DOI: 10.1088/1674-1056/27/2/023103
[22]
Chen H, Zhao J, Huang J, Liang Y 2019 Phys. Chem. Chem. Phys. 21 7447 DOI: 10.1039/C9CP00374F
[23]
Zhao J, Zheng Y 2017 Sci. Rep. 7 44897 DOI: 10.1038/srep44897
[24]
Xiao H, Chen K, Cui D, Jiang N, Yin G, Wang J, Wang R 2014 New J. Chem. 38 2386 DOI: 10.1039/c3nj01557b
[25]
Stasyuk A, Chen Y, Chen C, Wu P, Chou P 2016 Phys. Chem. Chem. Phys. 18 24428 DOI: 10.1039/C6CP05236C
[26]
Tang K, Chen C, Chuang H, Chen J, Chen Y, Lin Y, Shen J, Hu W, Chou P 2011 J. Phys. Chem. Lett. 2 3063 DOI: 10.1021/jz201439w
[27]
Dahal D, McDonald L, Bi X, Abeywickrama C, Gombedza F, Konopka M, Paruchuri S, Pang Y 2017 Chem. Commun. 53 3697 DOI: 10.1039/C7CC00700K
[28]
Wang J, Li Y, Duah E, Paruchuri S, Zhou D, Pang Y 2014 J. Mater. Chem. B 2 2008 DOI: 10.1039/c3tb21339k
[29]
Zhang X, Han J, Li Y, Sun C, Su X, Shi Y, Yin H 2020 Chin. Phys. B 29 038201 DOI: 10.1088/1674-1056/ab6d50
[30]
Liu X, Yin H, Li H, Shi Y 2017 Spectrochim. Acta Part. A 177 1 DOI: 10.1016/j.saa.2017.01.022
[31]
Zhao J, Liu X, Zheng Y 2017 J. Phys. Chem. A 121 4002 DOI: 10.1021/acs.jpca.7b01404
[32]
Li H, Yin H, Liu X, Shi Y, Jin M, Ding D 2017 Spectrochim. Acta Part. A 184 270 DOI: 10.1016/j.saa.2017.05.027
[33]
Xu L, Zhang T, Zhang Q, Yang D 2020 Chin. Phys. B 29 053102 DOI: 10.1088/1674-1056/ab8208
[34]
Zhao J, Chen J, Song P, Liu J, Ma F 2015 J. Clust. Sci. 26 1463 DOI: 10.1007/s10876-014-0830-1
[35]
Wan M, Jin C, Yu Y, Huang D, shao J 2017 Chin. Phys. B 26 033101 DOI: 10.1088/1674-1056/26/3/033101
[36]
Zhao J, Yang Y 2016 J. Mol. Liq 220 735 DOI: 10.1016/j.molliq.2016.05.029
[37]
Li W, Guo B, Chang C, Guo X, Zhang M, Li Y 2016 J. Mater. Chem. A 4 10135 DOI: 10.1039/C6TA04030F
[38]
Li X, Zhai Y, Zhang M, Song Y 2018 J. Phys. Org. Chem. 31 3821
[39]
Zhao J, Song P, Ma F 2014 Commun. Comput. Chem. 2 117 DOI: 10.4208/cicc.2014.v2.n3.3
[40]
Peng C, Shen J, Chen Y, Wu P, Hung W, Hu W, Chou P 2015 J. Am. Chem. Soc. 137 14349 DOI: 10.1021/jacs.5b08562
[41]
Abeywickrama C, Wijesinghe K, Stahelin R, Pang Y 2017 Chem. Commun. 53 5886 DOI: 10.1039/C7CC03417B
[42]
Zhao J, Dong H, Yang H, Zheng Y 2019 ACS Appl. Bio. Mater. 2 5182 DOI: 10.1021/acsabm.9b00818
[43]
Kumar G, Paul K, Luxami V 2020 New J. Chem. 44 12866 DOI: 10.1039/d0nj01651a
[44]
Nguyen H, Trinh B, Nguyen N, Dang S, Phama H, Dguyen L 2011 Phytochem. Lett. 4 48 DOI: 10.1016/j.phytol.2010.11.006
[45]
Niu Y, Wang R, Pu L, Zhang Y 2019 Dyes Pigm. 170 107594 DOI: 10.1016/j.dyepig.2019.107594
[46]
Bultinck P, Alsenoy C, Ayers P, Carbo-Dorca R 2007 J. Chem. Phys. 126 144111 DOI: 10.1063/1.2715563
[47]
Geldof D, Krishtal A, Blockhuys F, Alsenoy C 2011 J. Chem. Theory Comput. 7 1328 DOI: 10.1021/ct100743h
[48]
Verstraelen T, Ayers P, Speybroeck V, Waroquier M 2013 J. Chem. Theory Comput. 9 2221 DOI: 10.1021/ct4000923
[49]
Zhao J, Yao H, Liu J, Hoffmann M 2015 J. Phys. Chem. A 119 681 DOI: 10.1021/jp5120459
[50]
Zhou L, Liu J, Zhao G, Shi Y, Peng X, Han K 2007 Chem. Phys. 333 179 DOI: 10.1016/j.chemphys.2007.01.019
[51]
Rocard J, Berezin A, Leo F, Bonifazi D 2015 Angew. Chem. Int. Ed. 54 15739 DOI: 10.1002/anie.201507186
[52]
Zhao J, Li P 2015 RSC Adv. 5 73619 DOI: 10.1039/C5RA14601A
[53]
Moorthy J, Natarajan P, Venkatakrishnan, Huang D, Chow T 2007 Org. Lett. 9 5215 DOI: 10.1021/ol7023136
[54]
Zhao G, Northrop B, Stang P, Han K 2010 J. Phys. Chem. A 114 3418 DOI: 10.1021/jp911597z
[55]
Garo F, Haner R 2012 Angew. Chem. Int. Ed. 51 916 DOI: 10.1002/anie.201103295
[56]
Nakazato T, Kamatsuka T, Inoue J, Sakurai T, Seki S, Shinokubo H, Miyake Y 2018 Chem. Commun. 54 5177 DOI: 10.1039/C8CC01937A
[57]
Wang Y, Jia M, Zhang Q, Song X, Yang D 2019 Chin. Phys. B 28 103105 DOI: 10.1088/1674-1056/ab4042
[58]
Zhao G, Northrop B, Han K, Stang P 2010 J. Phys. Chem. A 114 9007 DOI: 10.1021/jp105009t
[59]
Zhao G, Chen R, Sun M, Liu J, Li G, Gao Y, Han K, Yang X, Sun L 2008 Chem. Eur. J. 14 6935 DOI: 10.1002/chem.200701868
[60]
Yin H, Zhang Y, Zhao H, Yang G, Shi Y, Zhang S, Ding D 2018 Dyes Pigm. 159 506 DOI: 10.1016/j.dyepig.2018.07.032
[61]
Han J, Liu X, Sun C, Li Y, Yin H, Shi Y 2018 RSC Adv. 8 29589 DOI: 10.1039/C8RA05812A
[62]
Li H, Han J, Zhao H, Liu X, Luo Y, Shi Y, Liu C, Jin M, Ding D 2019 J. Phys. Chem. Lett. 10 748 DOI: 10.1021/acs.jpclett.9b00026
[63]
Fan G, Han K, He G 2013 Chin. J. Chem. Phys. 26 635 DOI: 10.1063/1674-0068/26/06/635-645
[64]
Cong L, Yin H, Shi Y, Jin M, Ding D 2015 RSC Adv. 5 1205 DOI: 10.1039/C4RA09773D
[65]
Li H, Han J, Zhao H, Liu X, Ma L, Sun C, Yin H, Shi Y 2018 J. Clust. Sci. 29 585 DOI: 10.1007/s10876-018-1371-9
[66]
Merrick J, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683 DOI: 10.1021/jp073974n
[67]
Palafox M, Talaya J, Guerrero-Martinez A, Tardajos G, Kumar H, Vats J, Rastogi V 2010 Spectrosc. Lett. 43 51 DOI: 10.1080/00387010903261149
[68]
Zhao J, Dong H, Yang H, Zheng Y 2019 ACS Appl. Bio. Mater 2 2060 DOI: 10.1021/acsabm.9b00088
[69]
Zhang M, Zhou Q, Zhang M, Dai Y, Song P, Jiang Y 2017 J. Clust. Sci. 28 1191 DOI: 10.1007/s10876-016-1122-8
[70]
Qu R, Zhang Q, Zhang X, Wang Z 2012 Spectrosc. Lett. 45 240 DOI: 10.1080/00387010.2011.607206
[71]
Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y, Chou P 2011 J. Am. Chem. Soc. 133 17738 DOI: 10.1021/ja2062693
[72]
Chou P, Wei C, Wu G, Chen W 1999 J. Am. Chem. Soc. 121 12186 DOI: 10.1021/ja9917619
[73]
Hsieh C, Chou P, Shih C, Chuang W, Chung M, Lee J, Joo T 2011 J. Am. Chem. Soc. 133 2932 DOI: 10.1021/ja107945m
[74]
Tseng H, Liu J, Chen Y, Chao C, Liu K, Chen C, Lin T, Hung C, Chou Y, Lin T, Wang T, Chou O 2015 J. Phys. Chem. Lett. 6 1477 DOI: 10.1021/acs.jpclett.5b00423
[75]
Wang J, Chu Q, Liu X, Wesdemiotis C, Pang Y 2013 J. Phys. Chem. B 117 4127 DOI: 10.1021/jp401612u
[76]
Wang J, Liu X, Pang Y 2014 J. Mater. Chem. B 2 6634 DOI: 10.1039/C4TB01109K
[77]
McDonald L, Liu B, Taraboletti A, Whiddon K, Shriver L, Konopka M, Liu Q, Pang Y 2016 J. Mater. Chem. B 4 7902 DOI: 10.1039/C6TB02456D
[78]
Wang J, Chen W, Liu X, Wesdemiotis C, Pang Y 2014 J. Mater. Chem. B 2 3349 DOI: 10.1039/c4tb00020j
[1] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[2] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[6] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[7] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[8] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[9] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[10] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[11] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[12] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[13] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[14] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[15] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!