INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Double superlattice structure for improving the performance of ultraviolet light-emitting diodes |
Yan-Li Wang(王燕丽)1, Pei-Xian Li(李培咸)1, Sheng-Rui Xu(许晟瑞)2, Xiao-Wei Zhou(周小伟)1, Xin-Yu Zhang(张心禹)1, Si-Yu Jiang(姜思宇)1, Ru-Xue Huang(黄茹雪)1, Yang Liu(刘洋)1, Ya-Li Zi(訾亚丽)1, Jin-Xing Wu(吴金星)1, Yue Hao(郝跃)2 |
1 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract The novel AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) with double superlattice structure (DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice (SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the p-type regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5% and 37.9% in the output power and external quantum efficiency at 120 mA appear in the device with double superlattice structure.
|
Received: 30 October 2018
Revised: 19 December 2018
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0400800, 2016YFB0400801, and 2016YFB0400802), the National Natural Science Foundation of China (Grant No. 61634005), and the Fundamental Research Funds for the Central Universities, China (Grant No. JBZ171101). |
Corresponding Authors:
Sheng-Rui Xu, Xiao-Wei Zho
E-mail: shengruixidian@126.com;xwzhou@mail.xidian.edu.cn
|
Cite this article:
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃) Double superlattice structure for improving the performance of ultraviolet light-emitting diodes 2019 Chin. Phys. B 28 038502
|
[1] |
Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M and Chen Z 2014 Chin. Phys. Lett. 31 108502
|
[2] |
Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T and Su S C 2016 Chin. Phys. B 25 088505
|
[3] |
Dai F, Zheng X F, Li P X, Hou X H, Wang Y Z, Cao Y R, Ma X H and Hao Y 2016 Chin. Phys. Lett. 33 117301
|
[4] |
Li Y, Chen S C, Tian W, Wu Z H, Fang Y Y, Dai J N and Chen C Q 2013 IEEE Photon. J. 5 8200309
|
[5] |
Du X Z, Lu H, Chen D J, Xiu X Q, Zhang R and Zheng Y D 2010 Chin. Phys. Lett. 27 088105
|
[6] |
Zhang Z H, Zhang Y H, Bi W G, Geng C, Xu S, Demir H V and Sun X W 2016 Appl. Phys. Lett. 108 133502
|
[7] |
Schubert E F, Grieshaber W and Goepfert I D 1996 Appl. Phys. Lett. 69 3737
|
[8] |
Chen S C, Li Y, Tian W, Zhang M, Li S L, Wu Z H, Fang Y Y, Dai J N and Chen C Q 2015 Appl. Phys. A 118 1357
|
[9] |
Kozodoy P, Smorchkova Y P, Hansen M, Xing H L, DenBarrs S P, Mishra U K, Saxier A W, Perrin R and Mitchel W C 1999 Appl. Phys. Lett. 75 2444
|
[10] |
John S, Vladimir P, Lian C X, Xing H L and Debdeep J 2010 Science 327 60
|
[11] |
Xian Y L, Huang S J, Zheng Z Y, Fan B F, Chen Z M, Wu Z S, Wang G, Zhang B J and Jiang H 2013 J. Disp. Technol. 9 255
|
[12] |
Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G and Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese)
|
[13] |
Tong J H, Zhao B J, Wang X F, Chen X, Ren Z W, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 068505
|
[14] |
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
|
[15] |
Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
|
[16] |
Shi Q, Li L P, Zhang Y H, Zhang Z H and Bi W G 2017 Acta Phys. Sin. 66 58501 (in Chinese)
|
[17] |
Chen J, Fan G H and Zhang Y Y 2012 Acta Phys. Sin. 61 088502 (in Chinese)
|
[18] |
Ju Z G, Liu W, Zhang Z H, Tan S T, Ji Y, Kyaw Z B, Zhang X L, Lu S P, Zhang Y P, Zhu B B, Hasanov N, Sun X W and Demir H V 2013 Appl. Phys. Lett. 102 243504
|
[19] |
Yu X P, Fan G H, Ding B B, Xiong J Y, Xiao Y, Zhang T and Zheng S W 2014 Chin. Phys. B 23 028502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|