Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038502    DOI: 10.1088/1674-1056/28/3/038502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Double superlattice structure for improving the performance of ultraviolet light-emitting diodes

Yan-Li Wang(王燕丽)1, Pei-Xian Li(李培咸)1, Sheng-Rui Xu(许晟瑞)2, Xiao-Wei Zhou(周小伟)1, Xin-Yu Zhang(张心禹)1, Si-Yu Jiang(姜思宇)1, Ru-Xue Huang(黄茹雪)1, Yang Liu(刘洋)1, Ya-Li Zi(訾亚丽)1, Jin-Xing Wu(吴金星)1, Yue Hao(郝跃)2
1 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  

The novel AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) with double superlattice structure (DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice (SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the p-type regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5% and 37.9% in the output power and external quantum efficiency at 120 mA appear in the device with double superlattice structure.

Keywords:  light-emitting diodes (LEDs)      electron blocking layer (EBL)      superlattices  
Received:  30 October 2018      Revised:  19 December 2018      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0400800, 2016YFB0400801, and 2016YFB0400802), the National Natural Science Foundation of China (Grant No. 61634005), and the Fundamental Research Funds for the Central Universities, China (Grant No. JBZ171101).

Corresponding Authors:  Sheng-Rui Xu, Xiao-Wei Zho     E-mail:  shengruixidian@126.com;xwzhou@mail.xidian.edu.cn

Cite this article: 

Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃) Double superlattice structure for improving the performance of ultraviolet light-emitting diodes 2019 Chin. Phys. B 28 038502

[1] Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M and Chen Z 2014 Chin. Phys. Lett. 31 108502
[2] Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T and Su S C 2016 Chin. Phys. B 25 088505
[3] Dai F, Zheng X F, Li P X, Hou X H, Wang Y Z, Cao Y R, Ma X H and Hao Y 2016 Chin. Phys. Lett. 33 117301
[4] Li Y, Chen S C, Tian W, Wu Z H, Fang Y Y, Dai J N and Chen C Q 2013 IEEE Photon. J. 5 8200309
[5] Du X Z, Lu H, Chen D J, Xiu X Q, Zhang R and Zheng Y D 2010 Chin. Phys. Lett. 27 088105
[6] Zhang Z H, Zhang Y H, Bi W G, Geng C, Xu S, Demir H V and Sun X W 2016 Appl. Phys. Lett. 108 133502
[7] Schubert E F, Grieshaber W and Goepfert I D 1996 Appl. Phys. Lett. 69 3737
[8] Chen S C, Li Y, Tian W, Zhang M, Li S L, Wu Z H, Fang Y Y, Dai J N and Chen C Q 2015 Appl. Phys. A 118 1357
[9] Kozodoy P, Smorchkova Y P, Hansen M, Xing H L, DenBarrs S P, Mishra U K, Saxier A W, Perrin R and Mitchel W C 1999 Appl. Phys. Lett. 75 2444
[10] John S, Vladimir P, Lian C X, Xing H L and Debdeep J 2010 Science 327 60
[11] Xian Y L, Huang S J, Zheng Z Y, Fan B F, Chen Z M, Wu Z S, Wang G, Zhang B J and Jiang H 2013 J. Disp. Technol. 9 255
[12] Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G and Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese)
[13] Tong J H, Zhao B J, Wang X F, Chen X, Ren Z W, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 068505
[14] Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
[15] Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
[16] Shi Q, Li L P, Zhang Y H, Zhang Z H and Bi W G 2017 Acta Phys. Sin. 66 58501 (in Chinese)
[17] Chen J, Fan G H and Zhang Y Y 2012 Acta Phys. Sin. 61 088502 (in Chinese)
[18] Ju Z G, Liu W, Zhang Z H, Tan S T, Ji Y, Kyaw Z B, Zhang X L, Lu S P, Zhang Y P, Zhu B B, Hasanov N, Sun X W and Demir H V 2013 Appl. Phys. Lett. 102 243504
[19] Yu X P, Fan G H, Ding B B, Xiong J Y, Xiao Y, Zhang T and Zheng S W 2014 Chin. Phys. B 23 028502
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[4] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[5] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[6] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[7] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[8] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[9] Evaluation of current and temperature effects on optical performance of InGaAlP thin-film SMD LED mounted on different substrate packages
Muna E. Raypah, Mutharasu Devarajan, Fauziah Sulaiman. Chin. Phys. B, 2017, 26(7): 078503.
[10] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[11] High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier
Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2017, 26(1): 017803.
[12] Effect of disorders on topological phases inone-dimensional optical superlattices
Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利). Chin. Phys. B, 2016, 25(7): 077303.
[13] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[14] Modified method of surface plasmons in metal superlattices
Zhang Yu-Liang (张宇亮), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(5): 057301.
[15] Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography
Wu Kui (吴奎), Wei Tong-Bo (魏同波), Lan Ding (蓝鼎), Zheng Hai-Yang (郑海洋), Wang Jun-Xi (王军喜), Luo Yi (罗毅), Li Jin-Min (李晋闽). Chin. Phys. B, 2014, 23(2): 028504.
No Suggested Reading articles found!