CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Negative thermal expansion of Ca2RuO4 with oxygen vacancies |
Sen Xu(徐森)1, Yangming Hu(胡杨明)1, Yuan Liang(梁源)2, Chenfei Shi(史晨飞)3, Yuling Su(苏玉玲)3, Juan Guo(郭娟)1, Qilong Gao(高其龙)1, Mingju Chao(晁明举)1, Erjun Liang(梁二军)1 |
1 Key Laboratory of Materials Physics of Education of China, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China; 2 Department of Applied Physics, Donghua University, Shanghai 201620, China; 3 School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
|
|
Abstract Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxides but little is known about their effect on thermal expansion. Herein we report the effect of oxygen defects on the structure formation and thermal expansion properties of the layered perovskite Ca2RuO4 (CRO). It is shown that the CRO containing excess oxygen crystallizes in a metallic L-CRO phase without structure transition from 100 K to 500 K and displays a normal thermal expansion behavior, whereas those with oxygen vacancies adopt at room temperature an insulating S-CRO phase and exhibit an enormous negative thermal expansion (NTE) from 100 K to about 360 K, from where they undergo a structure transition to a high temperature metallic L-CRO phase. Compared to the L-CRO containing excess oxygen, the S-CRO structure has increasingly large orthorhombic strain and distinctive in-plane distortion upon cooling. The in-plane distortion of the RuO6 octahedra reaches a maximum across 260 K and then relaxes monotonically, providing a structure evidence for the appearance of an antiferromagnetic orbital ordering in the paramagnetic phase and the A_g phonon mode suppression and phase flip across the same temperature found recently. Both the L-and S-CRO display an antiferromagnetic ordering at about 150-110 K, with ferromagnetic ordering components at lower temperature. The NTE in S-CRO is a result of a complex interplay among the spin, orbital, and lattice.
|
Received: 19 March 2020
Revised: 10 April 2020
Accepted manuscript online:
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
61.72.jd
|
(Vacancies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874328 and 11574276). The SXRD experiments were performed at the BL02B2 and BL04B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposal Nos. 2019A1167, 2019A1095, and 2019A1340). We also acknowledge the help of Beamline Scientists Dr. Lirong Zheng (BSRF), Dr. Shogo Kawaguchi, and Dr. Koji Ohara (SPring-8). |
Corresponding Authors:
Yuan Liang, Erjun Liang
E-mail: yliang@dhu.edu.cn;ejliang@zzu.edu.cn
|
Cite this article:
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军) Negative thermal expansion of Ca2RuO4 with oxygen vacancies 2020 Chin. Phys. B 29 086501
|
[1] |
Mary T A, Evans J S O, Vogt T and Sleight A 1996 Science 272 90
|
[2] |
Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev. 44 3522
|
[3] |
Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci. 92 360
|
[4] |
Belo J H, Pires A L, Gomes I T, Sousa J B, Hadimani, R L, Jiles D C, Ren, Y, Zhang X Y Araujo J P and Pereira A M 2019 Phys. Rev. B 100 134303
|
[5] |
Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
|
[6] |
Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
|
[7] |
Ge X H, Mao Y C, Liu X S, Cheng Y G, Yuan Y L, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
|
[8] |
Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
|
[9] |
Chen D X, Zhang Y, Ge X H, Cheng Y G, Liu Y Y, Yuan H L, Guo J, Chao M J and Liang E J 2018 Phys. Chem. Chem. Phys. 20 20160
|
[10] |
Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
|
[11] |
Cairns A B, Catafesta J, Levelut C, Rouquette J, Lee A, Peters L, Thompson A L, Dmitriev V, Haines J and Goodwin A L 2013 Nat. Mater. 12 212
|
[12] |
Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.:Condens. Matter. 20 275224
|
[13] |
Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
|
[14] |
Shi K W, Sun Y, Yan J, Deng S H, Wang L, Wu H, Hu P W, Lu H Q, Malik M I, Huang Q Z and Wang C 2016 Adv. Mater. 28 3761
|
[15] |
Huang R J, Liu Y Y, Fan W, Tan J, Xiao F R, Qian L H and Li L F 2013 J. Am. Chem. Soc. 135 11469
|
[16] |
Li W, Huang R, Wang W, Tan J, Zhao Y Q, Li S P, Huang C J, Shen J and Li L F 2014 Inorg. Chem. 53 5869
|
[17] |
Hu Y, Zheng X Q, Ma G D, Lu H Q, Zhang L, Zhang C S, Xia Y H, Hao Y Q, He L H, Chen J, Shen F R, Wang S G, Wang C, Wang D H and Du Y W 2019 Phys. Rev. Appl. 12 034027
|
[18] |
Li L F, Tong P, Zou Y M, Tong W, Jiang W B, Jiang Y, Zhang X K, Lin J C, Wang M, Yang C, Zhu X B, Song W H and Sun Y P 2018 Acta Mater. 161 258
|
[19] |
Pan Z, Chen J, Jiang X X, Hu L, Yu R Z, Yamamoto H, Ogata T, Hattori Y, Guo F M, Fan X A, Li Y W, Li G Q, Gu H Z, Ren Y, Lin Z S, Azuma M and Xing X R 2017 J. Am. Chem. Soc. 139 14865
|
[20] |
Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60
|
[21] |
Azuma M, Chen W T, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 347
|
[22] |
Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G and Parkin S S P 2013 Science 339 1402
|
[23] |
Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J and Eom C B 2018 Science 362 1037
|
[24] |
Dash U, Acharya S K, Lee B W and Jung C U 2017 Nanoscale Res. Lett. 12 168
|
[25] |
Campbell C T and Peden C H F 2005 Science 309 713
|
[26] |
Liu G H, Li J D, Fu J, Jiang G P, Lui G, Luo D, Deng Y P, Zhang J, Cano Z P, Yu A, Su D, Bai Z Y, Yang L and Chen Z W 2019 Adv. Mater. 31 1806761
|
[27] |
Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V and Dunn B 2017 Nat. Mater. 16 454
|
[28] |
Cheng Y G, Mao Y C, Yuan B H, Ge X H, Guo J, Chao M J and Liang E J 2017 Phys. Lett. A 381 2195
|
[29] |
Takenaka K, Okamoto Y, Shinoda T, Katayama N and Sakai Y 2017 Nat. Commun. 8 14102
|
[30] |
Braden M, Andre G, Nakatsuji S and Maeno Y 1998 Phys. Rev. B 58 847
|
[31] |
Friedt O, Braden M, Andre G, Adelmann P, Nakatsuji S and Maeno Y 2001 Phys. Rev. B 63 174432
|
[32] |
Alexander C S, Cao G, Dobrosavljevic V, McCall S, Crow J E, Lochner E and Guertin R P 1999 Phys. Rev. B 60 R8422
|
[33] |
Jain A, Krautloher M, Porras J, Ryu G H, Chen D P, Abernathy D L, Park J T, Ivanov A, Chaloupka J, Khaliullin G, Keimer B and Kim B J 2017 Nat. Phys. 13 633
|
[34] |
Zhang G R and Pavarini E 2017 Phys. Rev. B 95 075145
|
[35] |
Cao G, McCall S C, Crow J E and Guertin R P 1997 Phys. Rev. B 56 5387
|
[36] |
Qi T F, Korneta O B, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. Lett. 105 177203
|
[37] |
Qi T F, Korneta O B, Parkin S, Hu J P and Cao G 2012 Phys. Rev. B 85 165143
|
[38] |
Shirley D A 1972 Phys. Rev. B 5 4709
|
[39] |
Morgan D J 2015 Surf. Interface Anal. 47 1072
|
[40] |
Rumble J R, Bickham D M and Powell C J 1992 Surf. Interface Anal. 19 241
|
[41] |
Lü M F, Deng X, Waerenborgh J C, Wu X J and Meng J 2012 Dalton T. 41 11507
|
[42] |
Dabrowski B, Chmaissem O, Klamut P W, Kolesnik S, Maxwell M, Mais J, Ito Y, Armstrong B D, Jorgensen J D and Short S 2004 Phys. Rev. B 70 014423
|
[43] |
Nakatsuji S, Ikeda S, Maeno Y 1997 Physica C 282-287 729
|
[44] |
Zegkinoglou I, Strempfer J, Nelson C S, Hill J P, Chakhalian J, Bernhard C, Lang J C, Srajer G, Fukazawa H, Nakatsuji S, Maeno Y and Keimer B 2005 Phys. Rev. Lett. 95 136401
|
[45] |
Porter D G, Granata V, Forte F, Matteo S D, Cuoco M, Fittipaldi R, Vecchione A and Bombardi A 2018 Phys. Rev. B 98 125142
|
[46] |
Lee M C, Kim C H, Kwak I, Kim J, Yoon S, Park B C, Lee B, Nakamura F, Sow C, Maeno Y, Noh T W and Kim K W 2018 Phys. Rev. B 98 161115
|
[47] |
Lee M C, Kim C H, Kwak I, Seo C W, Sohn C H, Nakamura F, Sow C, Maeno Y, Kim E A, Noh T W and Kim K W 2019 Phys. Rev. B 99 144306
|
[48] |
Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M and Sigrist M 2002 Eur. Phys. J. B 25 191
|
[49] |
Pavarini E, Yamasaki A, Nuss J and Andersen O K 2005 New J. Phys. 7 188
|
[50] |
Liu G Q 2011 Phys. Rev. B 84 235136
|
[51] |
Gorelov E, Karolak M, Wehling T O, Lechermann F, Lichtenstein A I and Pavarini E 2010 Phys. Rev. Lett. 104 226401
|
[52] |
Zhang Q, Xu Z F, Wang L F, Gao S and Yuan S J 2015 J. Alloy. Compd. 649 1151
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|