Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086501    DOI: 10.1088/1674-1056/ab8a36
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Negative thermal expansion of Ca2RuO4 with oxygen vacancies

Sen Xu(徐森)1, Yangming Hu(胡杨明)1, Yuan Liang(梁源)2, Chenfei Shi(史晨飞)3, Yuling Su(苏玉玲)3, Juan Guo(郭娟)1, Qilong Gao(高其龙)1, Mingju Chao(晁明举)1, Erjun Liang(梁二军)1
1 Key Laboratory of Materials Physics of Education of China, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 Department of Applied Physics, Donghua University, Shanghai 201620, China;
3 School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Abstract  Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxides but little is known about their effect on thermal expansion. Herein we report the effect of oxygen defects on the structure formation and thermal expansion properties of the layered perovskite Ca2RuO4 (CRO). It is shown that the CRO containing excess oxygen crystallizes in a metallic L-CRO phase without structure transition from 100 K to 500 K and displays a normal thermal expansion behavior, whereas those with oxygen vacancies adopt at room temperature an insulating S-CRO phase and exhibit an enormous negative thermal expansion (NTE) from 100 K to about 360 K, from where they undergo a structure transition to a high temperature metallic L-CRO phase. Compared to the L-CRO containing excess oxygen, the S-CRO structure has increasingly large orthorhombic strain and distinctive in-plane distortion upon cooling. The in-plane distortion of the RuO6 octahedra reaches a maximum across 260 K and then relaxes monotonically, providing a structure evidence for the appearance of an antiferromagnetic orbital ordering in the paramagnetic phase and the A_g phonon mode suppression and phase flip across the same temperature found recently. Both the L-and S-CRO display an antiferromagnetic ordering at about 150-110 K, with ferromagnetic ordering components at lower temperature. The NTE in S-CRO is a result of a complex interplay among the spin, orbital, and lattice.
Keywords:  negative thermal expansion      structure      oxygen vacancies      metal-insulator transition      octahedra distortion  
Received:  19 March 2020      Revised:  10 April 2020      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.-f (Structure of specific crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  61.72.jd (Vacancies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874328 and 11574276). The SXRD experiments were performed at the BL02B2 and BL04B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposal Nos. 2019A1167, 2019A1095, and 2019A1340). We also acknowledge the help of Beamline Scientists Dr. Lirong Zheng (BSRF), Dr. Shogo Kawaguchi, and Dr. Koji Ohara (SPring-8).
Corresponding Authors:  Yuan Liang, Erjun Liang     E-mail:  yliang@dhu.edu.cn;ejliang@zzu.edu.cn

Cite this article: 

Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军) Negative thermal expansion of Ca2RuO4 with oxygen vacancies 2020 Chin. Phys. B 29 086501

[1] Mary T A, Evans J S O, Vogt T and Sleight A 1996 Science 272 90
[2] Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev. 44 3522
[3] Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci. 92 360
[4] Belo J H, Pires A L, Gomes I T, Sousa J B, Hadimani, R L, Jiles D C, Ren, Y, Zhang X Y Araujo J P and Pereira A M 2019 Phys. Rev. B 100 134303
[5] Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
[6] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
[7] Ge X H, Mao Y C, Liu X S, Cheng Y G, Yuan Y L, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
[8] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[9] Chen D X, Zhang Y, Ge X H, Cheng Y G, Liu Y Y, Yuan H L, Guo J, Chao M J and Liang E J 2018 Phys. Chem. Chem. Phys. 20 20160
[10] Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[11] Cairns A B, Catafesta J, Levelut C, Rouquette J, Lee A, Peters L, Thompson A L, Dmitriev V, Haines J and Goodwin A L 2013 Nat. Mater. 12 212
[12] Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.:Condens. Matter. 20 275224
[13] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[14] Shi K W, Sun Y, Yan J, Deng S H, Wang L, Wu H, Hu P W, Lu H Q, Malik M I, Huang Q Z and Wang C 2016 Adv. Mater. 28 3761
[15] Huang R J, Liu Y Y, Fan W, Tan J, Xiao F R, Qian L H and Li L F 2013 J. Am. Chem. Soc. 135 11469
[16] Li W, Huang R, Wang W, Tan J, Zhao Y Q, Li S P, Huang C J, Shen J and Li L F 2014 Inorg. Chem. 53 5869
[17] Hu Y, Zheng X Q, Ma G D, Lu H Q, Zhang L, Zhang C S, Xia Y H, Hao Y Q, He L H, Chen J, Shen F R, Wang S G, Wang C, Wang D H and Du Y W 2019 Phys. Rev. Appl. 12 034027
[18] Li L F, Tong P, Zou Y M, Tong W, Jiang W B, Jiang Y, Zhang X K, Lin J C, Wang M, Yang C, Zhu X B, Song W H and Sun Y P 2018 Acta Mater. 161 258
[19] Pan Z, Chen J, Jiang X X, Hu L, Yu R Z, Yamamoto H, Ogata T, Hattori Y, Guo F M, Fan X A, Li Y W, Li G Q, Gu H Z, Ren Y, Lin Z S, Azuma M and Xing X R 2017 J. Am. Chem. Soc. 139 14865
[20] Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60
[21] Azuma M, Chen W T, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 347
[22] Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G and Parkin S S P 2013 Science 339 1402
[23] Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J and Eom C B 2018 Science 362 1037
[24] Dash U, Acharya S K, Lee B W and Jung C U 2017 Nanoscale Res. Lett. 12 168
[25] Campbell C T and Peden C H F 2005 Science 309 713
[26] Liu G H, Li J D, Fu J, Jiang G P, Lui G, Luo D, Deng Y P, Zhang J, Cano Z P, Yu A, Su D, Bai Z Y, Yang L and Chen Z W 2019 Adv. Mater. 31 1806761
[27] Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V and Dunn B 2017 Nat. Mater. 16 454
[28] Cheng Y G, Mao Y C, Yuan B H, Ge X H, Guo J, Chao M J and Liang E J 2017 Phys. Lett. A 381 2195
[29] Takenaka K, Okamoto Y, Shinoda T, Katayama N and Sakai Y 2017 Nat. Commun. 8 14102
[30] Braden M, Andre G, Nakatsuji S and Maeno Y 1998 Phys. Rev. B 58 847
[31] Friedt O, Braden M, Andre G, Adelmann P, Nakatsuji S and Maeno Y 2001 Phys. Rev. B 63 174432
[32] Alexander C S, Cao G, Dobrosavljevic V, McCall S, Crow J E, Lochner E and Guertin R P 1999 Phys. Rev. B 60 R8422
[33] Jain A, Krautloher M, Porras J, Ryu G H, Chen D P, Abernathy D L, Park J T, Ivanov A, Chaloupka J, Khaliullin G, Keimer B and Kim B J 2017 Nat. Phys. 13 633
[34] Zhang G R and Pavarini E 2017 Phys. Rev. B 95 075145
[35] Cao G, McCall S C, Crow J E and Guertin R P 1997 Phys. Rev. B 56 5387
[36] Qi T F, Korneta O B, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. Lett. 105 177203
[37] Qi T F, Korneta O B, Parkin S, Hu J P and Cao G 2012 Phys. Rev. B 85 165143
[38] Shirley D A 1972 Phys. Rev. B 5 4709
[39] Morgan D J 2015 Surf. Interface Anal. 47 1072
[40] Rumble J R, Bickham D M and Powell C J 1992 Surf. Interface Anal. 19 241
[41] Lü M F, Deng X, Waerenborgh J C, Wu X J and Meng J 2012 Dalton T. 41 11507
[42] Dabrowski B, Chmaissem O, Klamut P W, Kolesnik S, Maxwell M, Mais J, Ito Y, Armstrong B D, Jorgensen J D and Short S 2004 Phys. Rev. B 70 014423
[43] Nakatsuji S, Ikeda S, Maeno Y 1997 Physica C 282-287 729
[44] Zegkinoglou I, Strempfer J, Nelson C S, Hill J P, Chakhalian J, Bernhard C, Lang J C, Srajer G, Fukazawa H, Nakatsuji S, Maeno Y and Keimer B 2005 Phys. Rev. Lett. 95 136401
[45] Porter D G, Granata V, Forte F, Matteo S D, Cuoco M, Fittipaldi R, Vecchione A and Bombardi A 2018 Phys. Rev. B 98 125142
[46] Lee M C, Kim C H, Kwak I, Kim J, Yoon S, Park B C, Lee B, Nakamura F, Sow C, Maeno Y, Noh T W and Kim K W 2018 Phys. Rev. B 98 161115
[47] Lee M C, Kim C H, Kwak I, Seo C W, Sohn C H, Nakamura F, Sow C, Maeno Y, Kim E A, Noh T W and Kim K W 2019 Phys. Rev. B 99 144306
[48] Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M and Sigrist M 2002 Eur. Phys. J. B 25 191
[49] Pavarini E, Yamasaki A, Nuss J and Andersen O K 2005 New J. Phys. 7 188
[50] Liu G Q 2011 Phys. Rev. B 84 235136
[51] Gorelov E, Karolak M, Wehling T O, Lechermann F, Lichtenstein A I and Pavarini E 2010 Phys. Rev. Lett. 104 226401
[52] Zhang Q, Xu Z F, Wang L F, Gao S and Yuan S J 2015 J. Alloy. Compd. 649 1151
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[11] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[12] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[13] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[14] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[15] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
No Suggested Reading articles found!