Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126803    DOI: 10.1088/1674-1056/ac003a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays

Zhangyang Zhou(周章洋)1,2, Jia Yang(杨佳)1, Yi Liu(刘艺)1, Zhipeng Gao(高志鹏)1,†, Linhong Cao(曹林洪)4, Leiming Fang(房雷鸣)3, Hongliang He(贺红亮)1, and Zhengwei Xiong(熊政伟)2,‡
1 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
2 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
3 Institute of Physics, Nuclear, and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
4 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Manipulating metal-insulator transitions in strongly correlated materials is of great importance in condensed matter physics, with implications for both fundamental science and technology. Vanadium dioxide (VO2), as an ideal model system, is metallic at high temperatures and shown a typical metal-insulator structural phase transition at 341 K from rutile structure to monoclinic structure. This behavior has been absorbed tons of attention for years. However, how to control this phase transition is still challenging and little studied. Here we demonstrated that to control the Ag nanonet arrays (NAs) in monoclinic VO2(M) could be effective to adjust this metal-insulator transition. With the increase of Ag NAs volume fraction by reducing the template spheres size, the transition temperature (Tc) decreased from 68° to 51°. The mechanism of Tc decrease was revealed as:the carrier density increases through the increase of Ag NAs volume fraction, and more free electrons injected into the VO2 films induced greater absorption energy at the internal nanometal-semiconductor junction. These results supply a new strategy to control the metal-insulator transitions in VO2, which must be instructive for the other strongly correlated materials and important for applications.
Keywords:  vanadium dioxide      volume fraction      Ag nanonet arrays      metal-insulator transition  
Received:  28 March 2021      Revised:  08 May 2021      Accepted manuscript online:  12 May 2021
PACS:  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299 and U1930124) and the Foundation of China Academy of Engineering Physics (Grant No. 2018AB02).
Corresponding Authors:  Zhipeng Gao, Zhengwei Xiong     E-mail:  zhipenggao1020@163.com;zw-xiong@swust.edu.cn

Cite this article: 

Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟) Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays 2021 Chin. Phys. B 30 126803

[1] Hong K, Moon C, Suh J, Lee T, Kim S, Lee S and Jang H 2019 ACS Appl. Mater. Inter. 11 11568
[2] Trastoy J, Camjayi A, Valle J, Kalcheim Y and Schuller I K 2020 Phys. Rev. B 101 245109
[3] Ramirez J G, Saerbeck T, Wang S, Trastoy J, Malnou M, Lesueur J, Crocombette J P, Villegas J E and Schuller I K 2015 Phys. Rev. B 91 205123
[4] Wickramaratne D, Bernstein N and Mazin I I 2019 Phys. Rev. B 99 214103
[5] Chen Y, Wang Z, Chen S, Ren H, Li B, Yan W, Zhang G, Jiang J and Zou C 2018 Nano Energy 51 300
[6] Wang Z, Wang X, Sharman E, Li X, Yang L, Zhang G and Jiang J 2020 J. Phys. Chem. Lett. 11 1075
[7] Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H and Muraoka Y 2020 Nat. Commun. 11 1842
[8] Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Ly T T, Kim S, Choi Y H, Jozwiak C, Bostwick A, Rotenberg E, Park J, Sankar R, Kim K, Kim J and Chang Y J 2018 Nano Lett. 18 5432
[9] Lu Q, Bishop S R, Lee D, Lee S, Bluhm H, Tuller H L, Lee H N and Yildiz B 2018 Adv. Funct. Mater. 28 18030241
[10] Kim S Y, Lee M C, Han G, Kratochvilova M, Yun S, Moon S J, Sohn C, Park J G, Kim C and Noh T W 2018 Adv. Mater. 30 17047771
[11] Huang T, Kang T, Li Y, Li J, Deng L and Bi L 2018 Opt. Mater. Express 8 2300
[12] Miao L, Peng Y, Wang D, Liang J, Hu C, Nishibori E, Sun L, Fisher C A J and Tanemura S 2020 Phys. Chem. Chem. Phys. 22 7984
[13] Lu W, Zhao G, Song B, Li J, Zhang X and Han G 2017 Surf. Coat. Tech. 320 311
[14] Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y and Long Y 2018 Joule 2 1707
[15] Alexander P, Andrey V, Maksim B and Vadim P 2018 Phys. Rev. B 536 239
[16] Blagojevic V A, Obradovic N, Cvjeticanin N and Minic D M 2013 Sci. Sinter. 45 305
[17] Hu B, Zhang Y, Chen W, Xu C and Wang Z 2011 Adv. Mater. 23 3536
[18] Li M, Magdassi S, Gao Y and Long Y 2017 Small 13 1701147
[19] Tian X, Wu C, Xie Y, Wei S, Yao T, Long R, Sun Z, Feng Y, Cheng H and Yuan X 2012 Sci. Rep-UK 2 466
[20] Kim G H, Rathi S, Baik J M and Yi K S 2015 Curr. Appl. Phys. 15 1107
[21] Li M, Ji S, Pan J, Wu H, Zhong L, Wang Q, Li F and Li G 2014 J. Mater. Chem. A 2 48
[22] Lu X, Xiao X, Cao Z, Cheng H and Xu G 2016 RSC Adv. 6 47249
[23] Zhou Z, Li J, Xiong Z, Cao L, Fu Y and Gao Z 2020 Sol. Energy Mater. Sol. Cells 206 110303
[24] Zhou L, Hu M, Song X, Li P, Qiang X and Liang J 2018 Appl. Phys. A 124 5051
[25] Ferrara D W, MacQuarrie E R, Diez-Blanco V, Nag J, Kaye A B and Jr R F H 2012 Appl. Phys. A 108 255
[26] Madaras S E, Creeden J, Kittiwatanakul S, Lu J, Novikova I and Lukaszew R A 2018 Opt. Express 26 25657
[27] Ferrara D W, Nag J, MacQuarrie E R, Kaye A B and Haglund R F Jr 2013 Nano Lett. 13 4169
[28] Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F and Liu H 2006 Appl. Surf. Sci. 252 5512
[29] Leroy J, Bessaudou A, Cosset F and Crunteanu A 2012 Thin Solid Films 520 4823
[30] Thery V, Boulle A, Crunteanu A, Orlianges J C, Beaumont A, Mayet R, Mennai A, Cosset F, Bessaudou A and Fabert M 2016 Phys. Rev. B 93 184106
[31] Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y and Long Y 2019 J. Mater. Chem. C 7 2121
[32] Xin Y, Jin H, Yong Z, Sun L, Feng G, Liu H, Wang F, Jiang X, Wu W and Zheng W 2017 Nanomaterials 7 291
[33] Josh C, Choudhuri M, Raya M, Chowdhury D, Chattopadhyay P P and Datta A 2018 Mater. Today 5 10143
[34] Popuri S R, Miclau M, Artemenko A, Labrugere C and Pollet M 2013 Inorg. Chem. 52 4780
[35] Corr S A, Grossman M, Shi Y, Heier K R, Stucky G D and Seshadri R 2009 J. Mater. Chem. 19 4362
[36] Grunwaldt J D, Atamny F, Gbel U and Baiker A 1996 Appl. Surf. Sci. 99 353
[37] Ke Y, Wen X, Zhao D, Che R, Xiong Q and Long Y 2017 ACS Nano 11 7542
[38] Hulteen J C and Richard P V D 1995 J. Vac. Sci. Technol. A 13 1553
[39] Arndt A, Spoddig D, Esquinazi P, Barzola Q J, Dusari S and Butz T 2009 Phys. Rev. B 80 195402
[40] Zhou Y and Ramanathan S 2013 J. Appl. Phys. 113 213703
[41] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383
[42] Uda M, Nakamura A and Yamamoto T 1998 J. Electron. Spectrosc. 88 643
[43] Chen L, Cui Y, Shi S, Luo H and Gao Y 2018 Appl. Surf. Sci. 450 318
[44] Xu G, Huang C M, Tazawa M, Jin P, Chen D M and Miao L 2008 Appl. Phys. Lett. 93 4383
[45] Takami H, Kanki T and Tanaka H 2016 AIP Adv. 6 065118
[1] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[2] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[3] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[4] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[5] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[6] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[9] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[10] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[11] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[12] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[13] Experimental determination of distributions of soot particle diameter and number density by emission and scattering techniques
Huawei Liu(柳华蔚), Shu Zheng(郑树). Chin. Phys. B, 2019, 28(1): 014206.
[14] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[15] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
No Suggested Reading articles found!