CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays |
Zhangyang Zhou(周章洋)1,2, Jia Yang(杨佳)1, Yi Liu(刘艺)1, Zhipeng Gao(高志鹏)1,†, Linhong Cao(曹林洪)4, Leiming Fang(房雷鸣)3, Hongliang He(贺红亮)1, and Zhengwei Xiong(熊政伟)2,‡ |
1 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; 2 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; 3 Institute of Physics, Nuclear, and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; 4 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China |
|
|
Abstract Manipulating metal-insulator transitions in strongly correlated materials is of great importance in condensed matter physics, with implications for both fundamental science and technology. Vanadium dioxide (VO2), as an ideal model system, is metallic at high temperatures and shown a typical metal-insulator structural phase transition at 341 K from rutile structure to monoclinic structure. This behavior has been absorbed tons of attention for years. However, how to control this phase transition is still challenging and little studied. Here we demonstrated that to control the Ag nanonet arrays (NAs) in monoclinic VO2(M) could be effective to adjust this metal-insulator transition. With the increase of Ag NAs volume fraction by reducing the template spheres size, the transition temperature (Tc) decreased from 68° to 51°. The mechanism of Tc decrease was revealed as:the carrier density increases through the increase of Ag NAs volume fraction, and more free electrons injected into the VO2 films induced greater absorption energy at the internal nanometal-semiconductor junction. These results supply a new strategy to control the metal-insulator transitions in VO2, which must be instructive for the other strongly correlated materials and important for applications.
|
Received: 28 March 2021
Revised: 08 May 2021
Accepted manuscript online: 12 May 2021
|
PACS:
|
68.03.-g
|
(Gas-liquid and vacuum-liquid interfaces)
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299 and U1930124) and the Foundation of China Academy of Engineering Physics (Grant No. 2018AB02). |
Corresponding Authors:
Zhipeng Gao, Zhengwei Xiong
E-mail: zhipenggao1020@163.com;zw-xiong@swust.edu.cn
|
Cite this article:
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟) Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays 2021 Chin. Phys. B 30 126803
|
[1] Hong K, Moon C, Suh J, Lee T, Kim S, Lee S and Jang H 2019 ACS Appl. Mater. Inter. 11 11568 [2] Trastoy J, Camjayi A, Valle J, Kalcheim Y and Schuller I K 2020 Phys. Rev. B 101 245109 [3] Ramirez J G, Saerbeck T, Wang S, Trastoy J, Malnou M, Lesueur J, Crocombette J P, Villegas J E and Schuller I K 2015 Phys. Rev. B 91 205123 [4] Wickramaratne D, Bernstein N and Mazin I I 2019 Phys. Rev. B 99 214103 [5] Chen Y, Wang Z, Chen S, Ren H, Li B, Yan W, Zhang G, Jiang J and Zou C 2018 Nano Energy 51 300 [6] Wang Z, Wang X, Sharman E, Li X, Yang L, Zhang G and Jiang J 2020 J. Phys. Chem. Lett. 11 1075 [7] Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H and Muraoka Y 2020 Nat. Commun. 11 1842 [8] Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Ly T T, Kim S, Choi Y H, Jozwiak C, Bostwick A, Rotenberg E, Park J, Sankar R, Kim K, Kim J and Chang Y J 2018 Nano Lett. 18 5432 [9] Lu Q, Bishop S R, Lee D, Lee S, Bluhm H, Tuller H L, Lee H N and Yildiz B 2018 Adv. Funct. Mater. 28 18030241 [10] Kim S Y, Lee M C, Han G, Kratochvilova M, Yun S, Moon S J, Sohn C, Park J G, Kim C and Noh T W 2018 Adv. Mater. 30 17047771 [11] Huang T, Kang T, Li Y, Li J, Deng L and Bi L 2018 Opt. Mater. Express 8 2300 [12] Miao L, Peng Y, Wang D, Liang J, Hu C, Nishibori E, Sun L, Fisher C A J and Tanemura S 2020 Phys. Chem. Chem. Phys. 22 7984 [13] Lu W, Zhao G, Song B, Li J, Zhang X and Han G 2017 Surf. Coat. Tech. 320 311 [14] Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y and Long Y 2018 Joule 2 1707 [15] Alexander P, Andrey V, Maksim B and Vadim P 2018 Phys. Rev. B 536 239 [16] Blagojevic V A, Obradovic N, Cvjeticanin N and Minic D M 2013 Sci. Sinter. 45 305 [17] Hu B, Zhang Y, Chen W, Xu C and Wang Z 2011 Adv. Mater. 23 3536 [18] Li M, Magdassi S, Gao Y and Long Y 2017 Small 13 1701147 [19] Tian X, Wu C, Xie Y, Wei S, Yao T, Long R, Sun Z, Feng Y, Cheng H and Yuan X 2012 Sci. Rep-UK 2 466 [20] Kim G H, Rathi S, Baik J M and Yi K S 2015 Curr. Appl. Phys. 15 1107 [21] Li M, Ji S, Pan J, Wu H, Zhong L, Wang Q, Li F and Li G 2014 J. Mater. Chem. A 2 48 [22] Lu X, Xiao X, Cao Z, Cheng H and Xu G 2016 RSC Adv. 6 47249 [23] Zhou Z, Li J, Xiong Z, Cao L, Fu Y and Gao Z 2020 Sol. Energy Mater. Sol. Cells 206 110303 [24] Zhou L, Hu M, Song X, Li P, Qiang X and Liang J 2018 Appl. Phys. A 124 5051 [25] Ferrara D W, MacQuarrie E R, Diez-Blanco V, Nag J, Kaye A B and Jr R F H 2012 Appl. Phys. A 108 255 [26] Madaras S E, Creeden J, Kittiwatanakul S, Lu J, Novikova I and Lukaszew R A 2018 Opt. Express 26 25657 [27] Ferrara D W, Nag J, MacQuarrie E R, Kaye A B and Haglund R F Jr 2013 Nano Lett. 13 4169 [28] Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F and Liu H 2006 Appl. Surf. Sci. 252 5512 [29] Leroy J, Bessaudou A, Cosset F and Crunteanu A 2012 Thin Solid Films 520 4823 [30] Thery V, Boulle A, Crunteanu A, Orlianges J C, Beaumont A, Mayet R, Mennai A, Cosset F, Bessaudou A and Fabert M 2016 Phys. Rev. B 93 184106 [31] Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y and Long Y 2019 J. Mater. Chem. C 7 2121 [32] Xin Y, Jin H, Yong Z, Sun L, Feng G, Liu H, Wang F, Jiang X, Wu W and Zheng W 2017 Nanomaterials 7 291 [33] Josh C, Choudhuri M, Raya M, Chowdhury D, Chattopadhyay P P and Datta A 2018 Mater. Today 5 10143 [34] Popuri S R, Miclau M, Artemenko A, Labrugere C and Pollet M 2013 Inorg. Chem. 52 4780 [35] Corr S A, Grossman M, Shi Y, Heier K R, Stucky G D and Seshadri R 2009 J. Mater. Chem. 19 4362 [36] Grunwaldt J D, Atamny F, Gbel U and Baiker A 1996 Appl. Surf. Sci. 99 353 [37] Ke Y, Wen X, Zhao D, Che R, Xiong Q and Long Y 2017 ACS Nano 11 7542 [38] Hulteen J C and Richard P V D 1995 J. Vac. Sci. Technol. A 13 1553 [39] Arndt A, Spoddig D, Esquinazi P, Barzola Q J, Dusari S and Butz T 2009 Phys. Rev. B 80 195402 [40] Zhou Y and Ramanathan S 2013 J. Appl. Phys. 113 213703 [41] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383 [42] Uda M, Nakamura A and Yamamoto T 1998 J. Electron. Spectrosc. 88 643 [43] Chen L, Cui Y, Shi S, Luo H and Gao Y 2018 Appl. Surf. Sci. 450 318 [44] Xu G, Huang C M, Tazawa M, Jin P, Chen D M and Miao L 2008 Appl. Phys. Lett. 93 4383 [45] Takami H, Kanki T and Tanaka H 2016 AIP Adv. 6 065118 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|