Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104206    DOI: 10.1088/1674-1056/abab76
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An improved method for the investigation of high-order harmonic generation from graphene

Zhong Guan(管仲)1, Lu Liu(刘璐)2, Guo-Li Wang(王国利)1,†, Song-Feng Zhao(赵松峰)1, Zhi-Hong Jiao(焦志宏)1, and Xiao-Xin Zhou(周效信)1,
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
2 Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  

High-order harmonic generation (HHG) of bulk crystals in strong laser field is typically investigated with semiconductor Bloch equations (SBEs). However, in the length gauge, it suffers from the divergence for the crystals with a zero band gap, such as graphene, using both Bloch- and Houston-states expansion methods. Here, we present a method of solving the SBEs based on time-dependent Bloch basis, which is equivalent to semiconductor Bloch equations in the velocity gauge. Using this method, we investigate the HHG of a single-layer graphene. It is found that our results for population are in good agreement with the other results. For a initial condition py = 0, we find the electrons just move in single valence band or conduction band, which are in accord with classical results. Our simulations on the HHG dependence of polarization of driving laser pulse confirm that 5th, 7th, and 9th harmonic yields increase to the maximal value when laser ellipticity ε ≈ 0.3. What is more, similar to the case of atoms in the laser field, the total strength of 3rd harmonic decrease monotonically with the increase of ε. In addition, we simulate the dependence of HHG on crystallographic orientation with respect to the polarization direction of linear mid-infrared laser pulse, and the results reveal that for higher harmonics, their radiation along with the change of rotation angle θ reflects exactly the sixfold symmetry of graphene. Our method can be further used to investigate the behaviors of other materials having Dirac points (i.e., surface states of topological insulators) in the strong laser fields.

Keywords:  high-order harmonic generation      graphene      velocity gauge      divergence  
Received:  26 April 2020      Revised:  15 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  72.20.Ht (High-field and nonlinear effects)  
Corresponding Authors:  Corresponding author. E-mail: wanggl@nwnu.edu.cn Corresponding author. E-mail: zhouxx@nwnu.edu.cn   
About author: 
†Corresponding author. E-mail: wanggl@nwnu.edu.cn
‡Corresponding author. E-mail: zhouxx@nwnu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11764038, 11864037, 11765018, and 11664035) and the Science Foundation of Northwest Normal University, China (Grant No. NWNU-LKQN-17-1).

Cite this article: 

Zhong Guan(管仲), Lu Liu(刘璐), Guo-Li Wang(王国利)†, Song-Feng Zhao(赵松峰), Zhi-Hong Jiao(焦志宏), and Xiao-Xin Zhou(周效信)‡ An improved method for the investigation of high-order harmonic generation from graphene 2020 Chin. Phys. B 29 104206

Fig. 1.  

The first Brillouin zone in graphene.

Fig. 2.  

Comparison of our calculated conduction band population ρcc(k,t) in the velocity gauge (right column) with those from the two-band model (left column) given in Ref. [58] for panels (a) and (b) F0 = 0.8 V/Å and panels (c) and (d) F0 = 2.25 V/Å.

Fig. 3.  

The same as Fig. 2, but for panels (a) and (b) t = 0.75 fs and panels (c) and (d) t = 2.25 fs with the same F0 = 1.0 V/Å.

Fig. 4.  

Comparison of the temporal evolution of the normalized single-electron current calculated by our method and those from TDDE for (a) py = 0, (b) py = 0.02A0, and (c) py = 0.05A0. In all the cases px/eA0 = −0.75. In Fig. 4(a) we also show the result with Houston basis.

Fig. 5.  

Left column: the vector potential of laser pulse and electron current; Right column: the time evolution of the wave packet (red and black lines are classical trajectories).

Fig. 6.  

Comparison of harmonic spectra of graphene generated by laser fields with different ellipticity.

Fig. 7.  

The dependence of intensity in two perpendicular directions (x and y) of harmonics 3rd, 5th, 7th, and 9th on the ellipticity of driving laser pulse.

Fig. 8.  

(a) Harmonic radiation with different rotation angle θ. (b) The interband polarization dcv (k) as a function of the crystal momentum k. (c) and (d) Harmonic spectra generated from inter-band polarization and intra-band current for θ of 0° and 20°, respectively.

[1]
Xia C L, Lan Y Y, Li Q Q, Miao X Y 2019 Chin. Phys. B 28 103203 DOI: 10.1088/1674-1056/ab4278
[2]
Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S, Jun Jing 2017 Chin. Phys. Lett. 34 014206 DOI: 10.1088/0256-307X/34/1/014206
[3]
Pan Y, Guo F M, Yang Y J, Ding D J 2019 Chin. Phys. B 28 113201 DOI: 10.1088/1674-1056/ab47f8
[4]
Guo C X, Jiao Z H, Zhou X X, Li P C 2020 Acta Phys. Sin. 69 074203 in Chinese DOI: 10.7498/aps.69.20191883
[5]
Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke Q D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaga L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287 DOI: 10.1126/science.1218497
[6]
He L X, Lan P F, Le A T, Wang B N, Wang B C, Zhu X S, Lu P X, Lin C D 2018 Phys. Rev. Lett. 121 163201 DOI: 10.1103/PhysRevLett.121.163201
[7]
Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Légaré F, Villeneuve D M 2001 Nat. Phys. 7 464
[8]
Wang G L, Jin C, Le A T, Lin C D 2012 Phys. Rev. A 86 015401 DOI: 10.1103/PhysRevA.86.015401
[9]
Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mevel E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208 DOI: 10.1126/science.1208664
[10]
Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J, Corkum P B, Villeneuve D 2004 Nature 432 867 DOI: 10.1038/nature03183
[11]
Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424 DOI: 10.1126/science.1123904
[12]
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P B, Ivanov M Y 2009 Nature 460 972 DOI: 10.1038/nature08253
[13]
Vodungbo B, Sardinha A B, Gautier J, Lambert G, Lozano M, Sebban S, Meltchakov E, Delmotte 2011 Europhys. Lett. 94 54003 DOI: 10.1209/0295-5075/94/54003
[14]
Corkum P B, Krausz F 2007 Nat. Phys. 3 381 DOI: 10.1038/nphys620
[15]
Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
[16]
Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163 DOI: 10.1103/RevModPhys.81.163
[17]
Song H, Lü X Y, Zhu R B, Chen G 2019 Acta Phys. Sin. 68 184201 in Chinese DOI: 10.7498/aps.68.20190392
[18]
Xia C L, Miao X Y 2015 Chin. Phys. Lett. 32 043202 DOI: 10.1088/0256-307X/32/4/043202
[19]
Lü X Y, Zhu R B, Song H, Su N, Chen G 2019 Acta Phys. Sin. 68 214201 in Chinese DOI: 10.7498/aps.68.20190847
[20]
Corkum P B 1993 Phys. Rev. Lett. 71 1994 DOI: 10.1103/PhysRevLett.71.1994
[21]
Dou G, Yu Y, Guo M, Zhang Y M, Sun Z, Li Y X 2017 Chin. Phys. Lett. 34 038502 DOI: 10.1088/0256-307X/34/3/038502
[22]
Huang J J, Su L, Pu S Z, Sun S A, Zhang L Y 2016 Chin. Phys. Lett. 33 104204 DOI: 10.1088/0256-307X/33/10/104204
[23]
Kang B, Hwang S T 2016 Chin. Phys. Lett. 33 057201 DOI: 10.1088/0256-307X/33/5/057201
[24]
Wang L K, Duan F L 2019 Acta Phys. Sin. 68 193101 DOI: 10.7498/aps.68.20190995
[25]
Liao T J, Lin B H, Wang Y H 2019 Acta Phys. Sin. 68 187901 in Chinese DOI: 10.7498/aps.68.20190882
[26]
Wang T H, Li A, Han B 2019 Acta Phys. Sin. 68 187102 in Chinese DOI: 10.7498/aps.68.20190859
[27]
Xu F, Zhang L 2019 Chin. Phys. B 28 117403 DOI: 10.1088/1674-1056/ab478c
[28]
Hu R X, Ma X L, An C H, Liu J 2019 Chin. Phys. B 28 117802 DOI: 10.1088/1674-1056/ab4576
[29]
Ghimire S, DiChiara A D, Sistrunk E, Ndabashimiye G, Szafruga U B, Mohammad A, Agostini P, DiMauro L F, Reis D A 2012 Phys. Rev. A 85 043836 DOI: 10.1103/PhysRevA.85.043836
[30]
Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901 DOI: 10.1103/PhysRevLett.113.073901
[31]
Wu M, Browne D A, Schafer K J, Gaarde M B 2016 Phys. Rev. A 94 063403 DOI: 10.1103/PhysRevA.94.063403
[32]
Wu M, Ghimire S, Reis D A, Schafer K J, Gaarde M B 2015 Phys. Rev. A 94 043839 DOI: 10.1103/PhysRevA.94.043839
[33]
Ghimire S, Reis D A 2019 Nature 15 10 DOI: 10.1038/s41567-018-0315-5
[34]
McDonald C R, Vampa G, Corkum P B, Brabec T 2015 Phys. Rev. A 92 033845 DOI: 10.1103/PhysRevA.92.033845
[35]
Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302 DOI: 10.1103/PhysRevB.91.064302
[36]
Tamaya T, Ishikawa A, Ogawa T, Tanaka K 2016 Phys. Rev. Lett. 116 016601 DOI: 10.1103/PhysRevLett.116.016601
[37]
Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M, Ishikawa K L 2017 Phys. Rev. A 95 043416 DOI: 10.1103/PhysRevA.95.043416
[38]
McDonald C R, Vampa G, Corkum P B, Brabec T 2017 Phys. Rev. Lett. 118 173601 DOI: 10.1103/PhysRevLett.118.173601
[39]
Vampa G, Hammond T G, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, Corkum P B 2015 Phys. Rev. Lett. 115 193603 DOI: 10.1103/PhysRevLett.115.193603
[40]
Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901 DOI: 10.1103/PhysRevLett.113.073901
[41]
Guan Z, Zhou X X, Bian X B 2016 Phys. Rev. A 93 033852 DOI: 10.1103/PhysRevA.93.033852
[42]
Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q, Peng L Y 2018 Phys. Rev. A 97 043420 DOI: 10.1103/PhysRevA.97.043420
[43]
Tancogne D N, Mücke O D, K?rtner F X, Rubio A 2017 Phys. Rev. Lett. 118 087403 DOI: 10.1103/PhysRevLett.118.087403
[44]
Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498 DOI: 10.1038/nature14456
[45]
Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2017 Nat. Phys. 13 345 DOI: 10.1038/nphys3955
[46]
Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov A Y, Villeneuve D M, Ropers C, Corkum P B 2017 Science 357 330
[47]
Tancogne D N, Mücke O D, Kärtner F X, Rubio A 2017 Nat. Commun. 8 745 DOI: 10.1038/s41467-017-00764-5
[48]
Taucer M, Hammond T J, Corkum P B, Vampa G, Couture C, Thiré N, Schmidt B E, Légaré F, Selvi H, Unsuree N, Hamilton B, Echtermeyer T J, Denecke M A 2017 Phys. Rev. B 96 195420 DOI: 10.1103/PhysRevB.96.195420
[49]
Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207 in Chinese DOI: 10.7498/aps.68.20190789
[50]
Liu L, Zhao J, Yuan J M, Zhao Z X 2019 Chin. Phys. B 28 114205 DOI: 10.1088/1674-1056/ab47f7
[51]
Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M, Lu P X 2019 Phys. Rev. Lett. 122 193901 DOI: 10.1103/PhysRevLett.122.193901
[52]
Zeng A W, Bian X B 2020 Phys. Rev. Lett. 124 203901 DOI: 10.1103/PhysRevLett.124.203901
[53]
Wang X Q, Xu Y, Huang X H, Bian X B 2018 Phys. Rev. A 98 023427 DOI: 10.1103/PhysRevA.98.023427
[54]
Jiang S C, Chen J G, Wei H, Yu C, Lu R F, Lin C D 2018 Phys. Rev. Lett. 120 253201 DOI: 10.1103/PhysRevLett.120.253201
[55]
Jiang S C, Wei H, Chen J G, Yu C, Lu R F, Lin C D 2017 Phys. Rev. A 96 053850 DOI: 10.1103/PhysRevA.96.053850
[56]
Li J B, Zhang X, Fu S L, Feng Y K, Hu B T, Du H C 2019 Phys. Rev. A 100 043404 DOI: 10.1103/PhysRevA.100.043404
[57]
Wang H Q, Feng Y K, Fu S L, Li J B, Zhang X, Du H C 2019 Phys. Rev. A 99 023406 DOI: 10.1103/PhysRevA.99.023406
[58]
Kelardeh H K, Apalkov V, Stockman M I 2015 Phys. Rev. B 91 045439 DOI: 10.1103/PhysRevB.91.045439
[59]
Liu C, Zheng Y, Zeng Z, Li R 2018 Phys. Rev. A 97 063412 DOI: 10.1103/PhysRevA.97.063412
[60]
Zurrón Ó, Picón A, Plaja L 2018 New J. Phys. 20 053033 DOI: 10.1088/1367-2630/aabec7
[61]
Zurrón Ó, Boyero-García R, Hernández-García C, Picón A, Plaja L 2019 Opt. Express 27 7776 DOI: 10.1364/OE.27.007776
[62]
Ishikawa K L 2010 Phys. Rev. B 82 201402 DOI: 10.1103/PhysRevB.82.201402
[63]
Wallace P R 1947 Phys. Rev. 71 622 DOI: 10.1103/PhysRev.71.622
[64]
Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272 DOI: 10.1103/PhysRev.109.272
[65]
Saito R, Dresselhaus G, Dresselhaus M 1999 Physical Properties of Carbon Nanotubes London Imperial College Press 17 29
[66]
Ishikawa K L 2013 New J. Phys 15 055021 DOI: 10.1088/1367-2630/15/5/055021
[67]
Higuchi T, Heide C, Ullmann K, Weber H B, Hommelhoff P 2017 Nature 550 224 DOI: 10.1038/nature23900
[68]
Dimitrovski D, Madsen L, Pedersen T 2017 Phys. Rev. B 95 035405 DOI: 10.1103/PhysRevB.95.035405
[69]
Naib I, Sipe J E, Dignam M M 2016 Phys. Rev. B 90 245423 DOI: 10.1103/PhysRevB.90.245423
[70]
Chizhova L A, Libisch F, Burgdörfe J 2016 Phys. Rev. B 94 075412 DOI: 10.1103/PhysRevB.94.075412
[71]
Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736 DOI: 10.1126/science.aam8861
[72]
Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 2003 Phys. Rev. A 48 R3437 DOI: 10.1103/PhysRevA.48.R3437
[73]
Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, Huber R 2014 Nat. Photon. 8 119 DOI: 10.1038/nphoton.2013.349
[74]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[75]
Chen L 2019 Chin. Phys. B 28 117304 DOI: 10.1088/1674-1056/ab478e
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[8] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[9] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[10] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[11] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[12] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[13] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[14] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[15] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
No Suggested Reading articles found!