Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083203    DOI: 10.1088/1674-1056/ab99b1

Transparently manipulating spin-orbit qubit via exact degenerate ground states

Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华)
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China

By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling (SOC) and a specific controlled parameter, we demonstrate an exactly solvable two-level model with a complete set of spin-motion entangled Schrödinger kitten (or cat) states. In the undriven case, application of a modulation resonance results in the exact stationary states. We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging positions of the probability-density wavepackets to create transitions between the different degenerate ground states. The expected energy consisting of quantum and continuous parts is derived, and the energy deviations caused by the exchange operations are much less than the quantum gap. The results could be directly extended to a weakly coupled single-particle chain for transparently encoding spin-orbit qubits via the robust spin-motion entangled degenerate ground states.

Keywords:  transparent coherent control      spin-orbit qubit      exact degenerate ground state      spin-orbit coupling      spin-motion entanglement  
Received:  30 March 2020      Revised:  14 May 2020      Published:  05 August 2020
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  32.90.+a (Other topics in atomic properties and interactions of atoms with photons)  
  03.65.Ge (Solutions of wave equations: bound states)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204077 and 11475060), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ10002), the Hunan Provincial Hundred People Plan, China (2019), and the Science and Technology Plan Project of Hunan Province, China.

Corresponding Authors:  Kuo Hai, Kuo Hai     E-mail:;

Cite this article: 

Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华) Transparently manipulating spin-orbit qubit via exact degenerate ground states 2020 Chin. Phys. B 29 083203

[1] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[2] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084
[3] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[4] Pioro-Ladriére M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T and Tarucha S 2008 Nat. Phys. 4 776
[5] Li R, You J Q, Sun C P and Nori F 2013 Phys. Rev. Lett. 111 086805
[6] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[7] Monroe C, Meekhof D M, King B E and Wineland D 1996 Science 272 1131
[8] Kitagawa K, Takayama T, Matsumoto Y, Kato A, Takano R, Kishimoto Y, Bette S, Dinnebier R, Jackeli G and Takagi H 2018 Nature 554 341
[9] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[10] Kato Y, Myers R C, Driscoll D C, Gossard A C, Levy J and Awschalom D D 2003 Science 299 1201
[11] Rashba E I and Efros A L 2003 Phys. Rev. Lett. 91 126405
[12] Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308
[13] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[14] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji SC, Deng Y j, Chen S, Liu X J and Pan J W 2016 Science 354 83
[15] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[16] Hu F Q, Wang J J, Yu Z F, Zhang A X and Xue J K 2016 Phys. Rev. E 93 022214
[17] Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
[18] Zhu C Z, Dong L and Pu H 2016 J. Phys. B 49 145301
[19] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
[20] Sun F X, Zhang W, He Q Y and Gong Q H 2018 Phys. Rev. A 97 012307
[21] Zhang D W, Fu L B, Wang Z D and Zhu S. L 2012 Phys. Rev. A 85 043609
[22] Garcia-March M A, Mazzarella G, Dell'Anna L, Juliá-Díaz B, Salasnich L and Polls A 2014 Phys. Rev. A 89 063607
[23] Sun F, Ye J and Liu W M 2017 New J. Phys. 19 063025
[24] Yang S, Wu F, Yi W and Zhang P 2019 Phys. Rev. A 100 043601
[25] Xie W F, He Y Z and Bao C G 2015 Chin. Phys. B 24 060305
[26] Kong C, Chen H, Li C and Hai W 2018 Chaos 28 023115
[27] Kong C, Luo X, Chen H, Luo Y and Hai W 2019 Chaos 29 103148
[28] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[29] Liu W M and Li J 2018 Acta Phys. Sin. 67 110302(in Chinese)
[30] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[31] Li H and Chen F L 2019 Chin. Phys. B 28 070302
[32] Xu Z F and You L 2012 Phys. Rev. A 85 043605
[33] Tsitsishvili E, Lozano G S and Gogolin A O 2004 Phys. Rev. B 70 115316
[34] Salerno M, Abdullaev F Kh, Gammal A and Tomio L 2016 Phys. Rev. A 94 043602
[35] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[36] Grusdt F, Li T, Bloch I and Demler E 2017 Phys. Rev. A 95 063617
[37] Kartashov Y V, Konotop V V and Vysloukh V A 2018 Phys. Rev. A 97 063609
[38] Soluyanov A A, Gresch D, Troyer M, Lutchyn R M, Bauer B and Nayak C 2016 Phys. Rev. B 93 115317
[39] Combescot M, Shiau S Y and Voliotis V 2019 Phys. Rev. B 99 245202
[40] Liu X J, Borunda M F, Liu X and Sinova J 2009 Phys. Rev. Lett. 102 046402
[41] Guan Q and Blume D 2015 Phys. Rev. A 92 023641
[42] Li C, Ye F, Chen X, Kartashov Y V, Torner L and Konotop V V 2018 Phys. Rev. A 98 061601
[43] Zener C 1932 Proc. R. Soc. A 137 696
[44] Rabi I 1937 Phys. Rev. 51 652
[45] McCall S L and Hahn E L 1969 Phys. Rev. 183 457
[46] Bambini A and Berman P R 1981 Phys. Rev. A 23 2496
[47] Kyoseva E S and Vitanov N V 2005 Phys. Rev. A 71 054102
[48] Xie Q and Hai W 2010 Phys. Rev. A 82 032117
[49] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401
[50] Hai W, Hai K and Chen Q 2013 Phys. Rev. A 87 023403
[51] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128
[52] Li Z, Hai W and Deng Y 2013 Chin. Phys. B 22 090505
[53] Fielding H, Shapiro M and Baumert T 2008 J. Phys. B 41 070201
[54] Wei Y, Kong C and Hai W 2019 Chin. Phys. B 28 056701
[55] Nowak M P and Szafran B 2013 Phys. Rev. B 87 205436
[56] Hai W, Xie Q and Fang J 2005 Phys. Rev. A 72 012116
[57] Lu G, Hai W and Xie Q 2006 J. Phys. A 39 401
[58] Hai K, Luo Y, Chong G, Chen H and Hai W 2017 Quantum Inf. Comput. 17 456
[59] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Sciences 312 83
[60] Kienzler D, Fluhmann C, Negnevitsky V, Lo H Y, Marinelli M, Nadlinger D and Home J P 2016 Phys. Rev. Lett. 116 140402
[61] Cheinet P, Trotzky S, Feld M, Schnorrberger U, Moreno-Cardoner M, Fölling S and Bloch I 2008 Phys. Rev. Lett. 101 090404
[62] Luo Y, Lu G, Kong C and Hai W 2016 Phys. Rev. A 93 043409
[63] Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
[64] Chen Y A, Nascimbene S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[65] Stern A 2010 Nature 464 187
[66] Hai W, Lee C and Zhu Q 2008 J. Phys. B 41 095301
[67] Gardiner S A, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 79 4790
[68] Chen H, Kong C, Hai K and Hai W 2019 Quantum Inf. Proc. 18 379
[69] Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[70] Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C and Monroe C 2010 Phys. Rev. Lett. 104 140501
[71] Cole W S, Zhang S, Paramekanti A and Trivedi N 2012 Phys. Rev. Lett. 109 085302
[72] Xiao J P and An J 2015 New J. Phys. 17 113034
[73] Esmann M, Teichmann N and Weiss C 2011 Phys. Rev. A 83 063634
[74] Goldstein H 1980 Classical Mechanics (New York:Addison-Weslay Publishing Co.) Chap. 10
[1] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[4] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[5] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[6] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[7] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[8] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[9] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[10] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[11] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[12] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[13] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[14] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[15] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
No Suggested Reading articles found!