Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077508    DOI: 10.1088/1674-1056/ab9617

Degenerate antiferromagnetic states in spinel oxide LiV2O4

Ben-Chao Gong(龚本超)1, Huan-Cheng Yang(杨焕成)2,1, Kui Jin(金魁)3,4, Kai Liu(刘凯)1, Zhong-Yi Lu(卢仲毅)1
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations. We find that a series of magnetic states, in which the ferromagnetic (FM) V4 tetrahedra are linked together through the corner-sharing antiferromagnetic (AFM) V4 tetrahedra, possess degenerate energies lower than those of other spin configurations. The large number of these energetically degenerated states being the magnetic ground state give rise to strong magnetic frustration as well as large magnetic entropy in LiV2O4. The corresponding band structure and density of states of such a typical magnetic state in this series, i.e., the ditetrahedron (DT) AFM state, demonstrate that LiV2O4 is in the vicinity of a metal-insulator transition. Further analysis suggests that the t2g and eg orbitals of the V atoms play different roles in the magnetic exchange interactions. Our calculations are consistent with previous experimental measurements and shed light on understanding the exotic magnetism and the heavy-fermion behavior of LiV2O4.
Keywords:  spinel oxide      magnetic properties      heavy fermion      first-principles calculations     
Received:  05 March 2020      Published:  05 July 2020
PACS:  75.47.Lx (Magnetic oxides)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302903 and 2019YFA0308603), the National Natural Science Foundation of China (Grant Nos. 11774422, 11774424, and 11674374), the CAS Interdisciplinary Innovation Team, the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 19XNLG13).
Corresponding Authors:  Kai Liu, Zhong-Yi Lu     E-mail:;

Cite this article: 

Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅) Degenerate antiferromagnetic states in spinel oxide LiV2O4 2020 Chin. Phys. B 29 077508

[1] Hill R J, Craig J R and Gibbs G V 1979 Phys. Chem. Minerals 4 317
[2] Johnston D C, Prakash H, Zachariasen W H and Viswanathan R 1973 Mater. Res. Bull. 8 777
[3] Moshopoulou E G 1999 J. Am. Ceram. Soc. 82 3317
[4] Jin K, He G, Zhang X, Maruyama S, Yasui S, Suchoski R, Shin J, Jiang Y, Yu H S, Yuan J, Shan L, Kusmartsev V F, Greene R L and Takeuchi I 2015 Nat. Commun. 6 7183
[5] He G, Jia Y, Hou X, Wei Z, Xie H, Yang Z, Shi J, Yuan J, Shan L, Zhu B, Li H, Gu L, Liu K, Xiang T and Jin K 2017 Phys. Rev. B 95 054510
[6] Strobel P, Cras F L, Seguin L, Anne M and Tarascon J M 1998 J. Soild State Chem. 135 132
[7] Oohara Y, Sugiyama J and Kontani M 1999 J. Phys. Soc. Jpn. 68 242
[8] Maitra T and Valentí R 2007 Phys. Rev. Lett. 99 126401
[9] Fritsch V, Hemberger J, Büttgen N, Scheidt E W, Krug von Nidda H A, Loidl A and Tsurkan V 2004 Phys. Rev. Lett. 92 116401
[10] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 087503
[11] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[12] Auerbach A and Levin K 1986 Phys. Rev. Lett. 57 877
[13] Nekrasov I A, Pchelkina Z V, Keller G, Pruschke T, Held K, Krimmel A, Vollhardt D and Anisimov V I 2003 Phys. Rev. B 67 085111
[14] Anisimov V I, Korotin M A, Zölfl M, Pruschke T, Hur K L and Rice T M 1999 Phys. Rev. Lett. 83 364
[15] Singh D J, Blaha P, Schwarz K and Mazin I I 1999 Phys. Rev. B 60 16359
[16] Arita R, Held K, Lukoyanov A V and Anisimov V I 2007 Phys. Rev. Lett. 98 166402
[17] Tomiyasu K, Iwasa K, Ueda H, Niitaka S, Takagi H, Ohira-Kawamura S, Kikuchi T, Inamura Y, Nakajima K and Yamada K 2014 Phys. Rev. Lett. 113 236402
[18] Hattori K and Tsunetsugu H 2009 Phys. Rev. B 79 035115
[19] Yamashita Y and Ueda K 2003 Phys. Rev. B 67 195107
[20] Koda A, Kadono R, Higemoto W, Ohishi K, Ueda H, Urano C, Kondo S, Nohara M and Takagi H 2004 Phys. Rev. B 69 012402
[21] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778
[22] Kondo S, Johnston D C and Miller L L 1998 Phys. Rev. B 59 2609
[23] Lee S H, Qiu Y, Broholm C, Ueda Y and Rush J J 2001 Phys. Rev. Lett. 86 5554
[24] Shimizu Y, Takeda H, Tanaka M, Itoh M, Niitaka S and Takagi H 2012 Nat. Commun. 3 981
[25] Burdin S, Grempel D R and Georges A 2002 Phys. Rev. B 66 045111
[26] Lacroix C 2001 Can. J. Phys. 79 1469
[27] Uehara A, Shinaoka H and Motome Y 2015 Phys. Rev. B 92 195150
[28] Fujimoto S 2002 Phys. Rev. B 65 155108
[29] Matsuno J, Fujimori A and Mattheiss L F 1999 Phys. Rev. B 60 1607
[30] Eyert V, Höck K H, Horn S, Loidl A and Riseborough P S 1999 Europhys. Lett. 46 762
[31] Zhang Y H, Meng J and Taft C A 2009 Mol. Phys. 107 1445
[32] Rogers D B, Gillson J L and Gier T E 1967 Solid State Commun. 5 263
[33] Faran O and Volterra V 1997 Solid State Commun. 101 861
[34] Chmaissem O, Jorgensen J D, Kondo S and Johnston D C 1997 Phys. Rev. Lett. 79 4866
[35] Mahajan A V, Sala R, Lee E, Borsa F, Kondo S and Johnston D C 1998 Phys. Rev. B 57 8890
[36] Takeda H, Kato Y, Yoshimura M, Shimizu Y, Itoh M, Niitaka S and Takagi H 2015 Phys. Rev. B 92 045103
[37] Krimmel A, Loidl A, Klemm M, Horn S and Schober H 1999 Phys. Rev. Lett. 82 2919
[38] Fujiwara N, Yasuoka H and Ueda Y 1998 Phys. Rev. B 57 3539
[39] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052
[40] Jönsson P E, Takenaka K, Niitaka S, Sasagawa T, Sugai S and Takagi H 2007 Phys. Rev. Lett. 99 167402
[41] Shimoyamada A, Tsuda S, Ishizaka K, Kiss T, Shimojima T, Togashi T, Watanabe S, Zhang C Q, Chen C T, Matsushita Y, Ueda H, Ueda Y and Shin S 2006 Phys. Rev. Lett. 96 026403
[42] Irizawa A, Shimai K, Nanba T, Niitaka S and Takagi H 2010 J. Phys.: Conf. Ser. 200 012068
[43] Chamberland B L and Hewston T A 1986 Solid State Commun. 58 693
[44] Das S, Zong X, Niazi A, Ellern A, Yan J Q and Johnston D C 2007 Phys. Rev. B 76 054418
[45] Johnston D C 2000 Physica B 281&282 21
[46] Takagi H, Urano C, Kondo S, Nohara M, Ueda Y, Shiraki T and Okubo T 1999 Mater. Sci. Eng. B 63 147
[47] Okabe H, Hiraishi M, Koda A, Kojima K M, Takeshita S, Yamauchi I, Matsushita Y, Kuramoto Y and Kadono R 2019 Phys. Rev. B 99 041113(R)
[48] Blöchl P E 1994 Phys. Rev. B 50 17953
[49] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[50] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[51] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[52] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[53] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[56] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[57] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[58] Perdew J P, Ruzsinszky A, Tao J M, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201
[59] Liu K, Lu Z Y and Xiang T 2016 Phys. Rev. B 93 205154
[60] Yang H C, Gong B C, Liu K and Lu Z Y 2018 J. Phys.: Condens. Matter 31 025803
[1] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[2] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[3] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[4] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[5] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[6] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[7] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[8] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[9] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[10] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[11] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[12] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[13] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[14] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(10): 107504.
[15] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
No Suggested Reading articles found!