Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077508    DOI: 10.1088/1674-1056/ab9617

Degenerate antiferromagnetic states in spinel oxide LiV2O4

Ben-Chao Gong(龚本超)1, Huan-Cheng Yang(杨焕成)2,1, Kui Jin(金魁)3,4, Kai Liu(刘凯)1, Zhong-Yi Lu(卢仲毅)1
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations. We find that a series of magnetic states, in which the ferromagnetic (FM) V4 tetrahedra are linked together through the corner-sharing antiferromagnetic (AFM) V4 tetrahedra, possess degenerate energies lower than those of other spin configurations. The large number of these energetically degenerated states being the magnetic ground state give rise to strong magnetic frustration as well as large magnetic entropy in LiV2O4. The corresponding band structure and density of states of such a typical magnetic state in this series, i.e., the ditetrahedron (DT) AFM state, demonstrate that LiV2O4 is in the vicinity of a metal-insulator transition. Further analysis suggests that the t2g and eg orbitals of the V atoms play different roles in the magnetic exchange interactions. Our calculations are consistent with previous experimental measurements and shed light on understanding the exotic magnetism and the heavy-fermion behavior of LiV2O4.
Keywords:  spinel oxide      magnetic properties      heavy fermion      first-principles calculations  
Received:  05 March 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302903 and 2019YFA0308603), the National Natural Science Foundation of China (Grant Nos. 11774422, 11774424, and 11674374), the CAS Interdisciplinary Innovation Team, the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 19XNLG13).
Corresponding Authors:  Kai Liu, Zhong-Yi Lu     E-mail:;

Cite this article: 

Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅) Degenerate antiferromagnetic states in spinel oxide LiV2O4 2020 Chin. Phys. B 29 077508

[1] Hill R J, Craig J R and Gibbs G V 1979 Phys. Chem. Minerals 4 317
[2] Johnston D C, Prakash H, Zachariasen W H and Viswanathan R 1973 Mater. Res. Bull. 8 777
[3] Moshopoulou E G 1999 J. Am. Ceram. Soc. 82 3317
[4] Jin K, He G, Zhang X, Maruyama S, Yasui S, Suchoski R, Shin J, Jiang Y, Yu H S, Yuan J, Shan L, Kusmartsev V F, Greene R L and Takeuchi I 2015 Nat. Commun. 6 7183
[5] He G, Jia Y, Hou X, Wei Z, Xie H, Yang Z, Shi J, Yuan J, Shan L, Zhu B, Li H, Gu L, Liu K, Xiang T and Jin K 2017 Phys. Rev. B 95 054510
[6] Strobel P, Cras F L, Seguin L, Anne M and Tarascon J M 1998 J. Soild State Chem. 135 132
[7] Oohara Y, Sugiyama J and Kontani M 1999 J. Phys. Soc. Jpn. 68 242
[8] Maitra T and Valentí R 2007 Phys. Rev. Lett. 99 126401
[9] Fritsch V, Hemberger J, Büttgen N, Scheidt E W, Krug von Nidda H A, Loidl A and Tsurkan V 2004 Phys. Rev. Lett. 92 116401
[10] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 087503
[11] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[12] Auerbach A and Levin K 1986 Phys. Rev. Lett. 57 877
[13] Nekrasov I A, Pchelkina Z V, Keller G, Pruschke T, Held K, Krimmel A, Vollhardt D and Anisimov V I 2003 Phys. Rev. B 67 085111
[14] Anisimov V I, Korotin M A, Zölfl M, Pruschke T, Hur K L and Rice T M 1999 Phys. Rev. Lett. 83 364
[15] Singh D J, Blaha P, Schwarz K and Mazin I I 1999 Phys. Rev. B 60 16359
[16] Arita R, Held K, Lukoyanov A V and Anisimov V I 2007 Phys. Rev. Lett. 98 166402
[17] Tomiyasu K, Iwasa K, Ueda H, Niitaka S, Takagi H, Ohira-Kawamura S, Kikuchi T, Inamura Y, Nakajima K and Yamada K 2014 Phys. Rev. Lett. 113 236402
[18] Hattori K and Tsunetsugu H 2009 Phys. Rev. B 79 035115
[19] Yamashita Y and Ueda K 2003 Phys. Rev. B 67 195107
[20] Koda A, Kadono R, Higemoto W, Ohishi K, Ueda H, Urano C, Kondo S, Nohara M and Takagi H 2004 Phys. Rev. B 69 012402
[21] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778
[22] Kondo S, Johnston D C and Miller L L 1998 Phys. Rev. B 59 2609
[23] Lee S H, Qiu Y, Broholm C, Ueda Y and Rush J J 2001 Phys. Rev. Lett. 86 5554
[24] Shimizu Y, Takeda H, Tanaka M, Itoh M, Niitaka S and Takagi H 2012 Nat. Commun. 3 981
[25] Burdin S, Grempel D R and Georges A 2002 Phys. Rev. B 66 045111
[26] Lacroix C 2001 Can. J. Phys. 79 1469
[27] Uehara A, Shinaoka H and Motome Y 2015 Phys. Rev. B 92 195150
[28] Fujimoto S 2002 Phys. Rev. B 65 155108
[29] Matsuno J, Fujimori A and Mattheiss L F 1999 Phys. Rev. B 60 1607
[30] Eyert V, Höck K H, Horn S, Loidl A and Riseborough P S 1999 Europhys. Lett. 46 762
[31] Zhang Y H, Meng J and Taft C A 2009 Mol. Phys. 107 1445
[32] Rogers D B, Gillson J L and Gier T E 1967 Solid State Commun. 5 263
[33] Faran O and Volterra V 1997 Solid State Commun. 101 861
[34] Chmaissem O, Jorgensen J D, Kondo S and Johnston D C 1997 Phys. Rev. Lett. 79 4866
[35] Mahajan A V, Sala R, Lee E, Borsa F, Kondo S and Johnston D C 1998 Phys. Rev. B 57 8890
[36] Takeda H, Kato Y, Yoshimura M, Shimizu Y, Itoh M, Niitaka S and Takagi H 2015 Phys. Rev. B 92 045103
[37] Krimmel A, Loidl A, Klemm M, Horn S and Schober H 1999 Phys. Rev. Lett. 82 2919
[38] Fujiwara N, Yasuoka H and Ueda Y 1998 Phys. Rev. B 57 3539
[39] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052
[40] Jönsson P E, Takenaka K, Niitaka S, Sasagawa T, Sugai S and Takagi H 2007 Phys. Rev. Lett. 99 167402
[41] Shimoyamada A, Tsuda S, Ishizaka K, Kiss T, Shimojima T, Togashi T, Watanabe S, Zhang C Q, Chen C T, Matsushita Y, Ueda H, Ueda Y and Shin S 2006 Phys. Rev. Lett. 96 026403
[42] Irizawa A, Shimai K, Nanba T, Niitaka S and Takagi H 2010 J. Phys.: Conf. Ser. 200 012068
[43] Chamberland B L and Hewston T A 1986 Solid State Commun. 58 693
[44] Das S, Zong X, Niazi A, Ellern A, Yan J Q and Johnston D C 2007 Phys. Rev. B 76 054418
[45] Johnston D C 2000 Physica B 281&282 21
[46] Takagi H, Urano C, Kondo S, Nohara M, Ueda Y, Shiraki T and Okubo T 1999 Mater. Sci. Eng. B 63 147
[47] Okabe H, Hiraishi M, Koda A, Kojima K M, Takeshita S, Yamauchi I, Matsushita Y, Kuramoto Y and Kadono R 2019 Phys. Rev. B 99 041113(R)
[48] Blöchl P E 1994 Phys. Rev. B 50 17953
[49] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[50] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[51] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[52] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[53] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[56] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[57] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[58] Perdew J P, Ruzsinszky A, Tao J M, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201
[59] Liu K, Lu Z Y and Xiang T 2016 Phys. Rev. B 93 205154
[60] Yang H C, Gong B C, Liu K and Lu Z Y 2018 J. Phys.: Condens. Matter 31 025803
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[3] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[4] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[5] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[6] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[7] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[8] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[9] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[10] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[11] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!