Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058103    DOI: 10.1088/1674-1056/ab7e93
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys

Qing-Jun Xu(徐庆君)1,2, Shi-Ying Zhang(张士英)1,2, Bin Liu(刘斌)1, Zhen-Hua Li(李振华)1,2, Tao Tao(陶涛)1, Zi-Li Xie(谢自力)1, Xiang-Qian Xiu(修向前)1, Dun-Jun Chen(陈敦军)1, Peng Chen(陈鹏)1, Ping Han(韩平)1, Ke Wang(王科)1, Rong Zhang(张荣)1, You-Liao Zheng(郑有炓)1
1 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China
Abstract  The Mg acceptor activation mechanism and hole transport characteristics in AlGaN alloy with Mg doping concentration (~ 1020 cm-3) grown by metal-organic chemical vapor deposition (MOCVD) are systematically studied through optical and electrical properties. Emission lines of shallow oxygen donors and (VIII complex)1- as well as VN3+ and neutral Mg acceptors are observed, which indicate that self-compensation is occurred in Mg-doped AlGaN at highly doping levels. The fitting of the temperature-dependent Hall effect data shows that the acceptor activation energy values in Mg-doped AlxGa1-xN (x=0.23, 0.35) are 172 meV and 242 meV, and the hole concentrations at room temperature are 1.2×1018 cm-3 and 3.3×1017 cm-3, respectively. Therefore, it is believed that there exists the combined effect of the Coulomb potentials of the dopants and screening of the Coulomb potentials by a high hole concentration. Moreover, due to the high ionized acceptors' concentration and compensation ratio, the impurity conduction becomes more prominent and the valence band mobility drops sharply at low temperature.
Keywords:  AlGaN      Mg doping      MOCVD      cathodo-luminescence      Hall measurement  
Received:  15 October 2019      Revised:  25 January 2020      Published:  05 May 2020
PACS:  81.05.Ea (III-V semiconductors)  
  82.33.Ya (Chemistry of MOCVD and other vapor deposition methods)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0403100 and 2017YFB0403101), the National Natural Science Foundation of China (Grant Nos. 61704149, 61674076, and 61605071), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, and BE2015111), the Project of Science and Technology Development Program in Shandong Province, China (Grant Nos. 2013YD02054 and 2013YD02008), the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LN08), the Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Six-Talent Peaks Project of Jiangsu Province, China (Grant No. XYDXX-081), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2017KF03), the Project of Autonomous Innovation and Achievement Transformation Program in Zaozhuang City, China (Grant No. 2017GH3), the Overseas Study Program Funded by Shandong Provincial Government, China, the Laboratory Open Fund from Jiangsu Key Laboratory of Photoelectric Information Functional Materials, China, and the Doctoral Foundation Project of Zaozhuang University, China.
Corresponding Authors:  Bin Liu, Zi-Li Xie     E-mail:  bliu@nju.edu.cn;xzl@nju.edu.cn

Cite this article: 

Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓) Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys 2020 Chin. Phys. B 29 058103

[1] Wang L Y, Song W D, Hu W X, Li G, Luo X J, Wang H, Xiao J K, Guo J Q, Wang X F, Hao R, Yi H X, Wu Q B and Li S T 2019 Chin. Phys. B 28 018503
[2] Liu B, Zhang R, Xie Z L, Liu Q J, Zhang Z, Li Y, Xiu X Q, Yao J, Mei Q, Zhao H, Han P, Lu H, Chen P, Gu S L, Shi Y, Zheng Y D, Cheung W Y, Ke N and Xu J B 2008 J. Cryst. Growth 310 4499
[3] Zhang J P, Wu S, Rai S, Mandavilli V, Adivarahan V, Chitnis A, Shatalov M and Asif Khan M 2003 Appl. Phys. Lett. 83 3456
[4] Liang Y H and Towe E 2018 Appl. Phys. Rev. 5 011107
[5] Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photon. 10 43
[6] Katsuragawa M, Sota S, Komori M, Anbe C, Takeuchi T, Sakai H, Amano H and Akasaki I 1998 J. Cryst. Growth 189/190 528
[7] Jiang H X and Lin J Y 2014 Semicond. Sci. Technol. 29 84003
[8] Kozodoy P, Xing H L, DenBaars S P, Mishra U K, Saxler A, Perrin R, Elhamri S and Mitchel W C 2000 J. Appl. Phys. 87 1832
[9] Schubert E F 1993 Doping in III-V Semiconductors (Cambridge: University Press)
[10] Stampfl C and Van de Walle C G 2002 Phys. Rev. B 65 155212
[11] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[12] Xu Q J, Liu B, Zhang S Y, Tao T, Dai J P, He G T, Xie Z L, Xiu X Q, Chen D J, Chen P, Han P and Zhang R 2017 Superlattice. Microst. 101 144
[13] Xu Q J, Zhang S Y, Liu B, Tao T, Xie Z L, Xiu X Q, Chen D J, Chen P, Han P, Zheng Y D and Zhang R 2018 Superlattice. Microst. 119 150
[14] Nepal N, Nakarmi M L, Nam K B, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 2271
[15] Gu C J, Stevie F A, Hitzman C J, Saripalli Y N, Johnson M and Griffis D P 2006 Appl. Surf. Sci. 252 7228
[16] Nepal N, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 092107
[17] Taniyasu Y, Kasu M and Kobayashi N 2002 Appl. Phys. Lett. 81 1255
[18] Nakarmi M L, Kim K H, Zhu K, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 3769
[19] Feng Q, Wang F X and Hao Y 2004 Acta Phys. Sin. 53 3587 (in Chinese)
[20] Shahedipour F and Wessels B W 2000 Appl. Phys. Lett. 76 3011
[21] Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B and Schlotter P 1998 Appl. Phys. Lett. 72 1326
[22] Kaufmann U, Kunzer M, Obloh H, Maier M, Manz Ch, Ramakrishnan A and Santic B 1999 Phys. Rev. B 59 5561
[23] Kwon Y H, Shee S K, Gainer G H, Park G H, Hwang S J and Song J J 2000 Appl. Phys. Lett. 76 840
[24] Reshchikov M A, Yi G C and Wessels B W 1999 Phys. Rev. B 59 13176
[25] Shahedipour F and Wessels B W 2001 MRS Internet J. Nitride Semicond. Res. 6 12
[26] Nakarmi M L, Nepal N, Ugolini C, Altahtamouni T M, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 152120
[27] Nakarmi M L, Nepal N, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 091903
[28] Simpkins B S, Pehrsson P E and Laracuente A R 2006 Appl. Phys. Lett. 88 072111
[29] Kinoshita T, Obata T, Yanagi H and Inoue S I 2013 Appl. Phys. Lett. 102 012105
[30] Gong Y, Gu Y, Kuskovsky Igor L, Neumark G F, Li J, Lin J Y, Jiang H X and Ferguson I 2004 Mat. Res. Soc. Symp. Proc. 798 Y5.16.1
[31] Suzuki M, Uenoyama T and Yamase A 1995 Phys. Rev. B 52 8132
[32] Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A and Fletcher R M 1999 Mater. Sci. Eng. B 59 211
[33] Kumakura K, Makimoto T and Kobayashi N 2003 J. Appl. Phys. 93 3370
[34] Costato M, Gagliani G, Jacoboni C and Reggiani L 1974 J. Phys. Chem. Solids 35 1605
[35] Horita M, Takashima S, Tanaka R, Matsuyama H, Ueno K, Edo M, Takahashi T, Shimizu M and Suda J 2017 Jpn. J. Appl. Phys. 56 031001
[1] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[2] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[3] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[4] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[5] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[6] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[7] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[8] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[9] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰), Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[10] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[11] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[12] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[13] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[14] Recent advances in Ga-based solar-blind photodetectors
Ming-sheng Xu(徐明升), Lei Ge(葛磊), Ming-ming Han(韩明明), Jing Huang(黄静), Hua-yong Xu(徐化勇), Zai-xing Yang(杨再兴). Chin. Phys. B, 2019, 28(2): 028502.
[15] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
No Suggested Reading articles found!